
Extending the Java Programming Language
for Evolvable Component Integration

Johan T. Nyström Persson
Honiden Laboratory

Department of Computer Science, University of Tokyo

Thesis supervisor: Shinichi Honiden
Head of thesis committee: Masami Hagiya

January 16, 2012

Poplar

1

Monday, 16 January 2012

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
2

Monday, 16 January 2012

Java components

• Component-based and object-oriented
software are now dominant paradigms

• Java is an extremely successful OO
language

• However, essential difficulties remain in
integrating components and
preserving integrations

• In this work: component = set of Java
classes

3

Monday, 16 January 2012

Depending on a component

public class Socket {
 Socket() {}
 void bind(SocketAddress bindPoint) {}
 void connect() {}
 void send(byte[] data) {}
 void receive(byte[] data, int offset, int max)
{}
 void close () {} 	
}

• What knowledge does a programmer need
in order to make use of this Socket API?

• What must remain unchanged in the future,
in order for a client class to recompile correctly?

class Client {
 void m(SocketAddress sa) {
 Socket s = new Socket();
 s.bind(sa);
 s.connect();
 s.send(data);
 s.close();
 }
}

4

Monday, 16 January 2012

Temporal assumptions (protocol[1]/typestate[2])

public class Socket {
 	 Socket() {}
 	 void bind(SocketAddress bindPoint) {}
 	 void connect() {}
 	 void send(byte[] data) {}
 	 void receive(byte[] data, int offset, int max) {}
 	 void close () {} 	
}

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

bind

new Socket

• In general, methods of objects cannot
be called at any time. Sequential
constraints apply.

• We may be assuming that calling
send is valid once we have called
connect, and so on

5

1. Yellin, Daniel M and Strom, Robert E. Protocol Specifications and Component Adaptors. TOPLAS,
1997.
2. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004.

Monday, 16 January 2012

Note that without typestate, there is no way to statically check that clients use temporal
constraints correctly

Semantic assumptions (method contract)

public class Socket {
 	 Socket() {}
 	 void bind(SocketAddress bindPoint) {}
 	 void connect() {}
 	 void send(byte[] data) {}
 	 void receive(byte[] data, int offset, int max) {}
 	 void close () {} 	
}

• For each possible combination of input arguments, does the method
have a well defined behaviour?

• We expect that...

• Data passed to the send method will be sent to the connected
remote socket

• receive stores data in the array passed as the first parameter

• No files will be deleted from the hard drive (etc.)

6

Monday, 16 January 2012

Dependencies

• Constraints on future versions of service components

• Temporal constraints must not be strengthened, only
weakened.

• For semantic contracts, the substitution principle[1]
must be valid

• Only weaker preconditions or stronger postconditions
are acceptable changes

• Syntactic/structural changes, such as renaming or
incompatible refactoring, are unacceptable

7

1. Liskov, B. and Wing, J. A Behavioural Notion of Subtyping. TOPLAS 1994

Monday, 16 January 2012

The problem

• Essential conflict between evolution and
composition

• Components need to evolve post-deployment[1]

• Evolution of semantic contracts/
temporal contracts may be necessary
but this threatens integration

• A lot of manual work becomes necessary

• “Procedure calls are the assembly language of
software interconnection”[2]

8

1. Dig, D. and Johnson, R. The Role of Refactorings in API Evolution. ICSM 2005.
2. Shaw, M. Procedure Calls are the Assembly Language of Software Interconnection. 1993.

Monday, 16 January 2012

Key concept

• Instead of relying on “the assembly language
of procedure interconnections”, generate
integration code automatically!

• Re-generate after evolution

• Specify integrations with a minimum of
information so that the chance of finding
a solution is high

9

Monday, 16 January 2012

Related work

• AI planning

• Typestate and protocols

• Labelled argument selection

• Prospector (“Jungloid mining”)

• Effect systems

10

Monday, 16 January 2012

Related work: AI planning[1]

• AI planning is the problem of assembling a
sequence of actions to convert an initial state to a
goal state

• Intuitively, this is very close to the problem of
constructing valid API usage patterns

• It also seems to resemble what programmers
must do manually...

• How can we describe the domain so as to
generate meaningful, safe Java fragments using AI
planning?

1.1.1.1.1 Size 6

11

1. Ghallab, Nau and Traverso. Automated Planning: Theory & Practice. 2004.

Monday, 16 January 2012

Approach

• Find a way to describe Java code as
an AI planning domain, in such a way
that the results make sense and are useful

• Borrow ideas from many well-studied fields
to constrain and inform planning

• Use simple techniques to demonstrate
the overall proof of concept

12

Monday, 16 January 2012

Related: protocol and typestate systems

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

bind

new Socket

• Well studied domain since the 1980’s,
especially popular for OO languages
in the last 10 years[1,2,3]

• Typestate analysis constrains API
clients to use valid sequences only

• Use typestate to constrain AI
planning

13

1. Strom, R.E. and Yemini, S. Typestate: A Prog. Lang. Concept for Enhancing Software Reliability. TSE 1986
2. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004
3. Bierhoff, Kevin and Aldrich, Jonathan. Modular Typestate Checking of Aliased Objects. OOPSLA 2007.

Monday, 16 January 2012

Note that without typestate, there is no way to statically check that clients use temporal
constraints correctly

Related: Prospector

• Prospector[1] is an interactive tool that constructs
code fragments by matching argument types with
return types

• A valid codebase is mined in advance to extract
patterns

• Patterns are composed according to type
compatibility

• User requests a type to be generated in
a context

• Borrow this idea, but avoid the need to mine a codebase

14

1. Mandelin, D., Xu, L., Kimelman, D., and Bodik, R. Jungloid Mining: Helping to Navigate the API Jungle.
PLDI 2005.

Monday, 16 January 2012

Related: labelled argument selection

• Some languages (e.g. Lisp, ADA) allow for
argument reordering and omission based on
labels

• Labelled lambda calculus[1,2] allows for
automatic argument selection from a set
based on labels

• This is more powerful than Prospector, which
only uses type information

• What if we use both types and labels to select?

15

1. Garrigue, Jacques. Label-Selective Lambda Calculi and Transformation Calculi. 1994
2. Garrigue, Jacques and Ait-Kaci, Hassan. The Typed Polymorphic Label-Selective Lambda-Calculus.
POPL 1994.

Monday, 16 January 2012

Optionally cut from main section

Related: effect systems

• Effect systems are a well studied class of type
systems that annotate terms with their
side effects

• For OO languages, systems that reason about
heap reads and writes in terms of polymorphic
regions have been well studied[1,2]

• Use this idea to constrain AI planning
and avoid unwanted interference

16

1. Leino, K.R.M, Poetzsch-Heffter, A and Zhou, Y. Using Data Groups to Specify and Check Side Effects.
PLDI 2002.
2. Greenhouse, A and Boyland, J. An Object-Oriented Effect System. ECOOP 1999

Monday, 16 January 2012

Optionally cut from main section

Hypothesis

“A combination of AI planning, labelled variables
and temporal specifications, when applied to the

Java programming language, can yield a fully
automatic integration technique that is robust

to evolution.”

(Robust to evolution: gracefully handles cases that
cannot be handled by standard Java, either finding
a solution automatically or correctly reporting an

error)

17

Monday, 16 January 2012

Note: even though we are investigating this approach in the context of Java, it should be
straightforward to transfer it to other imperative OO languages. For instance, C#.
Strong typing is good, reduces ambiguity, so I expect C++ will not be as easy.

Contribution

• A Java extension, Poplar

• Fully automatic component integration
using declarative specifications

• Also: checking that methods conform
to their contracts

• Modular analysis and compilation

• Formalisation, implementation, case study

18

Monday, 16 January 2012

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
19

Monday, 16 January 2012

11 min mark

Example - socket client

20

public class Socket {
 	 Socket() {}
 	 void connect() {}
}

public class Client {
 void m(SocketAddress a)
 a: remoteAddress. {
 Socket s = new Socket();
 s.connect();
 }
}

public class Socket {
 	 Socket() {}
 void configure(boolean compress) {}
 	 void connect() {}
}

public class Client {
 void m(SocketAddress a)
 a: remoteAddress. {
 Socket s = new Socket();
 s.configure(false);
 s.connect();
 }
}

V. 1 V. 2

Monday, 16 January 2012

Annotate with labels and queries

21

public class Socket {
 resource state {
 	 properties @open, @raw;

 	 Socket() this: ++@raw. { } 	
 	 void connect() this: ++@open. { }	
 }
}

public class Socket {
 resource state {
 	 properties @open, @raw, @configured;

 	 Socket() this: ++@raw. { } 	
 void configure(boolean compr)
 compr: tCompression;
 this: ++@configured. { }
 	 void connect()
 this: @configured, ++@open. { }	
 }
}

public class Client {
 void m() {
 boolean b:(tCompression) = false;
 Socket s = #produce(Socket, @open);
 }
}

Monday, 16 January 2012

Generated code

22

finish(dummy)[3]

Socket[6]

res

recv 0

configure[5]

res recv 0

(gen_0,Socket,AnyLabel())

start(dummy)[2]

(b,boolean,tCompression)

recv

connect[4]

res recv

(gen_0,Socket,Unresolved@configured)

(gen_0,Socket,@open)

start(dummy)[2]

finish(dummy)[3]

recv

connect[4]

res recv

Socket[5]

res

(gen_0,Socket,@open)

(gen_0,Socket,Unresolved@raw)

V. 1 V. 2

For both versions, we can generate correct
integration code without changing the client

at all.

Monday, 16 January 2012

Design overview

• Labels/state names from typestate,
protocols, labelled lambda calculus

• Queries from Prospector

• Resources from Boyland/Greenhouse
effect system

• Uniqueness kinds from typestate, effect
systems, many others

23

Monday, 16 January 2012

Labels

• Most central element in the design

• Multiple roles

• Protocol/temporal state

• Internal semantic contract (predicate on
object’s private state)

• External semantic contract (anything)

• Two kinds: properties and tags

24

Monday, 16 January 2012

public class Socket {
 resource state {
 	properties @raw, @bound,
 @open, @closed;
 	
 	Socket()
 this: ++@raw. { ... } 	
 	void bind(SocketAddress bindPoint)
 this: -@raw, ++@bound. { ... }	
 	void connect()
 this: -@bound, ++@open. { ... }

	 //...
 }
}

Properties (generalised typestate)

• Destructible
labels, defined for a
class

• Essential in order to
encode temporal
constraints

• Prefixed with @

• Gives each object
potentially 2n “states”
for n properties

• Associated with a
resource

-@x: precondition (lost)
++@x: postcondition (added)

25

Monday, 16 January 2012

public class Socket {
 resource state {
 	properties @raw, @bound,
 @open, @closed;
 	 //...

 void send(byte[] data)
 this: @open; data: ++sentData.{ ... }

	 //...
 }
}

Tags

• Non-destructible
labels

• For irreversible
effects (e.g. sending
data)

• For identifying
constants

26

Monday, 16 January 2012

This is not an essential feature, but nice to have

Queries

• Purpose: express integration goals

• Two kinds

• Produce - request a value of a given
type with a set of labels

• Transform - request additional labels
for a given variable

• Idea from Prospector (which has an
equivalent of produce)

27

Monday, 16 January 2012

Produce-queries

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;

 	 Socket() this: ++@raw. { } 	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
 bindPoint:remoteAddress. { }	
 	 void connect() this: -@bound, ++@open. { }	
 	 void send(byte[] data) this: @open; data: ++sentData. { }	
 }
}

public class Client {
 void m(SocketAddress a)
 a: remoteAddress. {
 Socket s = #produce(Socket, @open);
 }
}

public class Client {
 void m(SocketAddress a)
 a: remoteAddress. {
 Socket s = new Socket();
 s.bind(a);
 s.connect();
 }
}

Generate and substitute

(The specifics of code generation will be discussed later)
28

Monday, 16 January 2012

Transform-queries

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;

 	 Socket() this: ++@raw. { } 	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
 bindPoint:remoteAddress. { }	
 	 void connect() this: -@bound, ++@open. { }	
 	 void send(byte[] data) this: @open; data: ++sentData. { }	
 }
}

public class Client {
 void m(Socket s) s: @open. {
 byte[] d = new byte[10000];
 setData(d);
 #transform(d, sentData);
 }
}

public class Client {
 void m(Socket s) s: @open. {
 byte[] d = new byte[10000];
 setData(d);
 s.send(d);
 }
}

Generate and substitute

29

Monday, 16 January 2012

Good for side effects

Label signatures

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;

 	 Socket() this: ++@raw. { } 	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
 bindPoint:remoteAddress. { }	
 	 void connect() this: -@bound, ++@open. { }	
 	 void send(byte[] data) this: @open; data: ++sentData. { }	
 }
}

public class SocketUser {
 void m(Socket s) s: -@raw, +@bound, +@open. {
 s.bind(getAddress());
 s.connect();
 }
}

++@x: directly added property
+@x: indirectly added property (checkable!)

30

Monday, 16 January 2012

The method m is now described in terms of its aggregate effects.
It can now also be used to satisfy a query.

Lower bound gives flexibility

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed, @fast;

 	 Socket() this: ++@raw. { } 	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
 bindPoint:remoteAddress. { }	
 	 void connect() this: -@bound, ++@open, +@fast. { }	
 	 void send(byte[] data) this: @open; data: ++sentData. { }	
 }
}

public class SocketUser { //@fast is missing
 void m(Socket s) s: -@raw, +@bound, +@open. {
 s.bind(getAddress());
 s.connect();
 }
}

The m method contract does not need to report all
established labels, as long as preconditions (-@x) and

invariants (@x) are fully reported
31

Monday, 16 January 2012

The method m is now described in terms of its aggregate effects.
It can now also be used to satisfy a query.

Resources

public class Socket {
 resource state {
 	 properties @raw, @bound, @open,
@closed;

 	 String remoteHost = null;	
 	 boolean isConnected = false;
 	 int connectionSpeed = 0;

 //...
 }

 resource speed {
 properties @fast, @slow;
 int dataSpeed;

 void setFast() this: ++@fast. {
 dataSpeed = 100;
 }
 void setSlow() this: ++@slow. {
 dataSpeed = 10;
 }
 }
}

• Directly inspired by abstract
regions in Boyland-
Greenhouse system - use to
avoid unwanted
interference

• Group related data and
properties

• Properties may be a
predicate on the internal
data in the resource =>
internal semantic contract

• When the data in the
resource is changed, we say
that the resource is mutated

32

Monday, 16 January 2012

Resource mutations must be declared
public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;
 	 String remoteHost = null;	
 	 boolean isConnected = false;

 //...
 }

 resource speed {
 properties @fast, @slow;
 int dataSpeed;
 void setFast() this: ++@fast. {
 dataSpeed = 100;
 }
 void setSlow() this: ++@slow. {
 dataSpeed = 10;
 }
 }

 void disconnectAndStop() mutates this.speed, this.state:
 this: ++@halted. {
 this.dataSpeed = 0; //Poplar will force these writes to be reported
 this.isConnected = false;
 this.remoteHost = null;
 }
} 33

Monday, 16 January 2012

Note that direct writes to these fields are only permitted in the current formalisation if we
also have a ++@x property for that resource.
Note implicit mutations here.

Mutation summary

• Interpretation of a resource mutation: all
properties in that resource are lost,
except for those specified in the label signature

• A set of resource mutations is called a mutation
summary. This is:

• An upper bound on lost labels

• Compositional in the same way as label
signatures

34

Monday, 16 January 2012

35

Method contract = label signature (lower bound) +
mutation summary (upper bound)

Monday, 16 January 2012

Putting it together

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;

 	 Socket() this: ++@raw. { } 	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound. { }	
 	 void connect() this: -@bound, ++@open. { }	
 	 void send(byte[] data) this: @open; data: ++sentData. { }	
 }
 resource speed {
 properties @fast, @slow;

 void setFast() this: ++@fast. { }
 void setSlow() this: ++@slow. { }
 }
}

class SocketUser {
 void m(Socket s) mutates s.state, s.speed:
 s: -@raw, +@open, +@fast. {
 s.bind(getAddress());
 s.connect();
 s.setFast();
 }

} 36

Monday, 16 January 2012

Note that if we add more properties to the Socket, generally, a mutation summary remains
true

Uniqueness

• Aliasing is an essential difficulty with
languages that have pointers

• Given two pointers, do they point to the
same objects?

• Simple approach: uniqueness kinds - classify
references according to assumptions and
guarantees[1,2]

37

1. Minsky, N. Towards Alias-Free Pointers. ECOOP 1996
2. Boyland, J. Alias Burying: Unique Variables Without Destructive Reads. Softw. Pract & Exp., 2000

Monday, 16 January 2012

Uniqueness kinds

Kind Assumption Guarantee

Normal
None (may be

aliased) None

Unique Is unique
Remains
unique

Maintain
None (may be

aliased)
Remains
unique

38

Monday, 16 January 2012

Note that this is not novel - these ideas are well known in the literature, but under slightly
different names

Uniqueness and mutations

class SocketUser {
 void m(Socket s) mutates s.state, s.speed:
 s: maintain, -@raw, +@open, +@fast. {
 s.bind(getAddress());
 s.connect();
 s.setFast();
 }

 void withUnique(Socket u) mutates u.state, u.speed:
 u: unique. {
 m(s);
 }
 void withAliases(Socket a) mutates any(Socket).state,
 any(Socket).speed: { //a is implicitly a “normal” variable
 m(a);
 }
 void withNew() { //No need to report anything
 m(new Socket());
 }
}

The reported mutations are different depending on the
uniqueness kinds of the variables passed to a method.39

Monday, 16 January 2012

This is one of the major sources of imprecision.

Design - summary

• Labels as a least unit of specification

• Resources group properties and related
state

• Label signatures give a lower bound on
established state

• Mutation summaries give an upper bound
on erased labels

• Uniqueness kinds to handle aliasing

40

Monday, 16 January 2012

Design - justification

• Sufficient features to describe Java code
as an AI planning domain for practical
purposes (to be demonstrated)

• Necessary features

• Temporal constraints (properties) must be
addressed

• Interference (resources) must be addressed

• Queries needed to request an integration

• Aliasing (uniqueness kinds) must be addressed

41

Monday, 16 January 2012

When I had to make design choices in order to merge the various elements, I tried firstly to
make it simple, second, to make use of opportunities to make components more evolvable.

Comparison

42

System Poplar B/G Effect Typestate/Fugue Labelled LC Prospector

Polymorphic regions ✔ ✔

Subregions ✔

Effect summaries ✔ ✔

Temporal state names ✔ ✔

Labelled arg. selection ✔ ✔

State for individual frames ✔

Type-based queries ✔ ✔

Search/AI planning ✔ ✔

Unique pointers ✔ ✔ ✔

Static checking ✔ ✔ ✔

Monday, 16 January 2012

Poplar is not a complete replacement for any of the systems we have borrowed from, rather it
is a compromise between different designs

Another perspective

43

Poplar works by breaking down the contract of each
method into small units, and reasoning about these

individually

Monday, 16 January 2012

Workflow (ideal)

44

New
system
design

(Re)generate
integration links

from queries
(automated)

Client
component

changes

Update client-side
Poplar

annotations

Service
component

changes

Update service-
side Poplar
annotations

System OK

Verify
integration

links
(automated,

optional)

Redesign
system

Fail

Succeed Fail

Succeed

Start

Verify
method

contracts
(automated)

Debug

Fail

Succeed

3 main compiler tasks.
“Verify integration links”
is an optional stage that
is not essential in order to
make use of Poplar.

Monday, 16 January 2012

Could add some colour here, etc
describe relative importance of stages

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
45

Monday, 16 January 2012

25 min mark

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
46

Monday, 16 January 2012

29 min mark

MJ

• Core calculus for an imperative fragment of
Java[1, 2]

• Models mutable state and Java’s block
structure faithfully

• Valid subset of Java

• Boyland/Greenhouse effect system has
already been studied in the context of MJ

47

1. Bierman, G.M., Parkinson, M.J., and Pitts, A.M. MJ: An Imperative Core Calculus for Java and Java with
Effects. Tech report Cambridge U., 2003
2. Bierman, G.M. and Parkinson, M.J. Effects and Effect Inference for a Core Java Calculus. WOOD 2003.

Monday, 16 January 2012

Big picture

MJ types

Labels

Uniqueness

Well-typed
Poplar term

Bounded and Composable Temporal Specifications with Labels, Resources and Effects 13

value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅) �

�

i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (postcond(LS), ∅, ∅) �

�

i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this �→ {@a}, x �→ {@a}, f �→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this �→ {@c}, x �→ {@a}, f �→ {@d}}, ∅, ∅})

Mutation of fresh variables is always permitted (since nobody else could have a ref-
erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.

Bounded and Composable Temporal Specifications with Labels, Resources and Effects 13

value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅) �

�

i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (postcond(LS), ∅, ∅) �

�

i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this �→ {@a}, x �→ {@a}, f �→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this �→ {@c}, x �→ {@a}, f �→ {@d}}, ∅, ∅})

Mutation of fresh variables is always permitted (since nobody else could have a ref-
erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.

Bounded and Composable Temporal Specifications with Labels, Resources and Effects 13

value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅) �

�

i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (postcond(LS), ∅, ∅) �

�

i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this �→ {@a}, x �→ {@a}, f �→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this �→ {@c}, x �→ {@a}, f �→ {@d}}, ∅, ∅})

Mutation of fresh variables is always permitted (since nobody else could have a ref-
erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.

Bounded and Composable Temporal Specifications with Labels, Resources and Effects 15

U-CSUPER
∆;Γ � � e1 : C�

1 : U1 ∆c(C
�) = C1 : Uarg U1 � Uarg

Γ (this) = C Γ = Γ � � {this : C : Fresh } invocationOk(Γ, {e1})
∆;Γ � super(e1); uok

U-VARWRITE
∆;Γ � x : C : U

∆;Γ � e : C� : U �
U

� = Normal ∨ (U � = Fresh ∧ e �= x
�) U

� � U

∆;Γ � x = e; uok

U-FIELDWRITE
∆;Γ � e : C ∆f (C)(f)(∅) = C

� : U � : l : ρ
∆;Γ � e

�� : C�� : U ��
U

� = Normal ∨ (U � = Fresh ∧ e �= x
�) U

�� � U
�

∆;Γ � e.f = e
��; uok

U-COBJECT
C ≺1 Object

∆;Γ, this : C : Fresh � super(); uok

U-PRODUCE
∆;Γ � x

� : U �
U � U

�
U �= Unique

∆;Γ � x
� = #produce(C, l, U); uok

3.4 Checking algorithms

4 Case study: Evolving a JFreeChart client in Java

4.1 Using JFreeChart

Throughout our study we will use a simple program that makes use of JFreeChart to
display data in a chart. This chart is then displayed in a standard Swing JFrame. Figure 4
shows an example of basic usage of the JFreeChart API.

4.2 Constructing the chart using a Poplar query

We would like to construct the chart using a query instead of an explicit call to a fac-
tory method, in anticipation of future evolution. We may convert an explicit method
call into a query using an almost completely mechanical process. As a minimum, we
need to be able to identify each argument of the method, as well as the result being
passed back. In order to do this, we introduce the changes shown in Figure 5. Chart-

Client acquires the additional method useFactoryIndirect. In ChartFactory, we give
a label to each argument and identify the result by the tag tXYBarChart. Here we pre-
fix these labels with codet to indicate that they are tags, and to separate them from
the variable names. In useFactoryIndirect, we add local variables with the necessary
labels, which supplies the arguments needed to invoke the method. We then use the
query #produce(JFreeChart, tXYBarChart) instead of invoking the factory method
directly.

The solution that was found by Jardine for this query is shown in Figure 6. This
simply shows that the arguments were selected in the expected way and a method invo-
cation was generated. In this figure, the blue rectangle corresponds to the static method

CHAPTER 3. FORMALISING POPLAR

TE-VAR
∆ � Γ ok � ∆ ok

∆; Γ, x : C : U � x : C : U : l� + LS
where LS = {∅, {x= : l

�}, ∅} and

TE-SUBLABELS
∆; Γ � e : C : U : l + LS!ρ

∆; Γ � e : C : U : l
�
+ LS!rho

where l
� ⊆ l

TE-FIELDACCESSTHIS
∆; Γ � this : C : U : l + LS

∆; Γ � this.f : C1 : U
�
1 : l1 + LS2

where LS1 = {∅, {this.f= : l1}, ∅}

and U
�
1 = uniqueReturn(U2, U1), (LS2, ρ2) = (LS, ∅)⊕ (LS1, ∅)

TE-FIELDACCESS
∆; Γ � e : C : U : l + LS

∆f (C)(f)(l) = C1 : U1 : l1 e �= x

∆; Γ � e.f : C1 : U
�
1 : l1 + LS

where U
�
1 = uniqueReturn(U2, U1)

TE-NULL
∆ � C ok ∆ � Γ ok � ∆ ok

∆; Γ � null : C

TE-UPCAST
∆; Γ � e : C2 C2 ≺ C1 ∆ � C1

∆; Γ � (C1)e : C1

TE-DOWNCAST
∆; Γ � e : C2 C1 ≺ C2 ∆ � C1

∆; Γ � (C1)e : C1

TE-STUPIDCAST
∆; Γ � e : C2 C2 �≺ C1

C1 �≺ C2 ∆ � C1

∆; Γ � (C1)e : C1

3.2.8 Typing judgments for promotable expressions

TE-METHOD
∆; Γ � e

� : C
� : U

� : precond(LS)(rec) + LS�!ρ�
C1 ≺ Ca

∆; Γ � e1 : C1 : U1 : precond(LS)(arg1) + LS1!ρ1

∆m(C�)(m) = (Urec)Ca : Ua → τ : Uret + LS!ρ
∆ � e!ρ(this) ok ∆ � e1!ρ(arg1) ok invocationOk(Γ, {e�

, e1})
U

� � Urec U1 � Ua U
�
ret = uniqueReturn(U �

, Uret)
(LS��

, ρ��) = (LS�
, ρ�)⊕ (LS1, ρ1)⊕ invsub(LS, ρ, e

�
, C

�
, U

�
, e1, C1, U1)

∆; Γ � e
�
.m(e1) : τ : U

�
ret : postcond(LS)(ret) + LS�� \ direct(C�

.m)!ρ��

TE-NEW
∆; Γ � e1 : C

�
1 : precond(LS)(arg1) : U

�
1 + LS�!ρ�

∆c(C) = C1 : U1 + LS!ρ C
�
1 ≺ C1

∆ � e1!ρ(arg1) ok invocationOk(Γ, {e1}) U
�
1 � U1

(LS��
, ρ��) = ((LS�

, ρ�)⊕ cnsub(LS, ρ, e1, C1, U1))

∆; Γ � new C(e1) : C : postcond(LS)(ret) : Fresh + LS��!ρ��

invocationOk(Γ, e) def= ∀ei((Γ � ei : Unique ∨ Γ � ei : Fresh) =⇒ ei /∈

(e \ ei) ∧ Γ � ei : Fresh =⇒ ei �= x)

uniqueReturn(Urec, Uret)
def=

�
Maintain if Urec ∈ {Maintain, Normal} and Uret = Unique
Uret otherwise

60

• Formalisation based on MJ

• Poplar types = MJ (Java) types +
uniqueness kinds + labels and
effects

• Well-typed Poplar terms are
guaranteed to use labels
correctly (to be defined)

48

Monday, 16 January 2012

Formalisation structure

• Judgments for

• Well-formed class

• Well-formed overriding

• Poplar typing for statements, expressions

• Labels, mutations, uniqueness

• Valid solution to a query

49

Monday, 16 January 2012

Composing method contracts (chaining)

void	
 configure(Address	
 a)	
 mutates	
 this.configuration:
	
 	
 this:	
 +@configured,	
 @notConnected.	
 {	
 ...	
 }

void	
 connect(Address	
 a)	
 mutates	
 this.connection:	

	
 	
 this:	
 +@connected,	
 @configured;	

mutates	
 this.connection,	
 this.configuration:
	
 	
 this:	
 +@connected,	
 +@configured;

+

=

When statements are executed in sequence, we can obtain a
contract for the resulting fragment

configure(a);
connect(a);

50

Monday, 16 January 2012

Soundness

• Establishment of a label: being created by a
method annotated with ++t or ++@p

• Use of a label: being assumed as a precondition
for some statement

• A Poplar fragment is sound if all labels
for all values are

• Established before they are used

• Not erased between the point of establishment
and the point of use

51

Monday, 16 January 2012

Soundness (2)

• I believe that the Poplar type system is
sound - a proof is left for future work

• One possibility is altering the semantics
to model creation and destruction of
labels directly

52

Monday, 16 January 2012

Technical achievements

• Polymorphism of properties
(subclasses can redefine or extend
meaning)

• Polymorphism of resources
(subclasses can redefine, add new
properties)

• Modular checking and compilation

53

Monday, 16 January 2012

A limitation

• Properties that are overloaded by
subclasses are handled in a
restricted way

• Must be established in all class
frames before they can be used

• Some typestate systems[1] track
states in each frame
independently

54

class Base {
 resource r {
 properties @p;
 int i;
 void makeP() this: ++@p. {
 i = 0;
 } }
}

class E1 extends Base {
 resource r {
 int j;
 //Stronger invariant for @p
 void makeP() this: ++@p. {
 super.makeP();
 useP(); //Invalid!
 j = 0;
 }

 void useP() this: @p. {
 } }
}

1. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004.

Monday, 16 January 2012

(Very small) example

3.2. POPLAR0 : A MINIMAL POPLAR

written to some fields may be less restrictive. It is also used when direct addition

methods override other direct addition methods (see rule T-MBODY). Note that the

user is not expected to write drop statements manually. The checker will insert them

as required.

Statement sequences

MJ has two rules for statement sequences, TS-INTRO for sequencing where the first

statement is a local variable declaration, and TS-SEQ for all other sequences. This

approach changes the typing context appropriately to include the new variable in TS-

INTRO. We have retained this approach, adjusted it to handle our effects appropriately,

and added two new rules for sequencing of statements, TS-SEQVARWRITE for vari-

able writes and TS-SEQFIELDWRITE for field writes. Field writes and variable writes

are thus constrained twice: first in the judgments that type the write statements them-

selves, and then in the sequencing with other statements. The reason for this is that

when a write such as x = e is carried out, the expression e may already have its own

label signature and mutation summary associated with it by the type system. As the

expression is assigned to x, we must now associate the existing LS and ρ with the vari-

able x instead of with the expression e. This is done by the helper functions lf low and

rflow in these sequencing judgments. The exact same principle applies to field writes.

In these rules we also check that the mutations that will be carried out on the writ-

ten field or variable after the write (in program execution order) are acceptable, by

using the ∆; Γ � e!ρ ok judgment.This prevents, for instance, the future mutation of a

resource of a return value from some function call. Such mutations must be prohibited

since they may place other objects in inconsistent states.

TS-SEQ

∆; Γ � s1 : void + LS1!ρ1 s1 �= C x
s1 �= x = e ∆; Γ � s2 . . . sn : τ + LS2!ρ2

{r | raw(r) ∈ ρ1} ∩ res(precond(LS2)) = ∅
∆; Γ � s1s2 . . . sn : τ + (LS1, ρ1)⊕ (LS2, ρ2)

TS-SEQVARWRITE

∆; Γ � x = e; : void + LS1!ρ1

∆; Γ � s2 . . . sn : τ + LS2!ρ2

∆; Γ � e!ρ2(x) ok ∆; Γ � e : C : U
(LS1, ρ1)⊕ (lf low(LS2, x, e), rflow(ρ2, x, e, C, U)) = (LS, ρ)

∆; Γ � x = e; s2 . . . sn : τ + LS!ρ

TS-SEQFIELDWRITE

∆; Γ � this.f = e; : void + LS1!ρ1

∆; Γ � s2 . . . sn : τ + LS2!ρ2

∆; Γ � e!ρ2(this.f) ok ∆; Γ � e : C : U
(LS1, ρ1)⊕ (lf low(LS2, this.f, e), rflow(ρ2, this.f, e, C, U)) = (LS, ρ)

∆; Γ � x = e; s2 . . . sn : τ + LS!ρ

TS-INTRO

∆; Γ, x : C : U � s1 . . . sn : τ + LS!ρ

∆; Γ � C x:U; s1 . . . sn : τ + (LS \ LS(x))!(ρ \ ρ(x))

63

3.2. POPLAR0 : A MINIMAL POPLAR

ceptable to mutate the resources r of the expression e. It is defined as follows.

∆; Γ � e!∅ ok ∆; Γ � x!r ok ∆; Γ � this.f !r ok
∆; Γ � e!r ok

∆; Γ � (C)e!r ok

∆; Γ � e : C : Fresh
∆; Γ � e!r ok

Invocation substitutions are used to bind the label signatures and mutation sum-
maries of methods and constructors to concrete expressions when they are invoked.
Method types contain placeholders like ret, this (to indicate return value and receiver)
and the names of the arguments from the point of view of the method. After binding
them with invsub, we obtain method signatures that correspond to the caller side view
of a method invocation. Note that the mutation summary is adjusted depending on
whether the inputs may be aliased or not.

invsub(LS, ρ, er, Cr, Ur, ea, Ca, Ua) def=

(invsub(LS, er, ea), invsub(ρ, er, Cr, Ur, ea, Ca, Ua))

invsub(LS, er, ea) def= lf low(lf low(LS, rec, er), arg, ea))

invsub(ρ, er, Cr, Ur, ea, Ca, Ua) def= rflow(rflow(ρ, rec, er, Cr, Ur), arg, ea, Ca, Ua))

cnsub(LS, ρ, ea, Ca, Ua) def= (rflow(ρ, arg, ea, Ca, Ua), lf low(LS, arg, ea))

lf low(LS, e, e�) def=
�

LS[e �→ e�] if e = this.f or e = x

LS otherwise

rflow(ρ, e, e�, C, U) def=






ρ[e �→ any(C)] if U = Maintain or U = Normal
ρ[e �→ this.f] if e = this.f and U /∈ {Maintain , Normal }
ρ[e �→ x] if e = x and U /∈ {Maintain , Normal }
ρ otherwise

3.2.7 Typing judgments for expressions

Generally, typing judgments take the following form: ∆; Γ � e : C : U : l + LS!τ ,
where C is the type of the expression, U is a uniqueness kind, l is the set of labels
associated with it (at its point of declaration), LS is the label signature associated with
evaluating the expression, and τ is the mutation summary associated with evaluating
the expression. Sometimes we will abbreviate this rather long judgment for the sake of
brevity, when not all information is needed. For instance, we may write ∆; Γ � e : U
or ∆; Γ � e : C.

Many of the typing judgments use the chaining operation (LS1, ρ1) ⊕ (LS2, ρ2)
(see Section 3.2.1. We remind the reader that each time we make use of this operation,
we also implicitly require that (LS1, ρ1) ⊕ (LS2, ρ2) ok, since otherwise the former
operation is undefined. For the sake of brevity we do not spell this out explicitly.

59

CHAPTER 3. FORMALISING POPLAR

1 class C {

2 Object field;

3 void start(Object u, Object m, Object n)

4 u: unique; m: maintain. {

5 toUnique(u);

6 toMaintain(u);

7 toNormal(u); //Forbidden
8
9 toUnique(m); //Forbidden

10 toMaintain(m);

11 toNormal(m); //Forbidden
12
13 toUnique(n); //Forbidden
14 toMaintain(n);

15 toNormal(n);

16 }

17
18 Object makeFresh() result: unique. {

19 Object f = new C();

20 return f; //Fresh becomes unique
21 }

22
23 void toUnique(Object u) u: unique. {

24 this.field = u; //Forbidden
25 }

26 void toMaintain(Object m) m: maintain. {

27 this.field = u; //Forbidden
28 }

29 void toNormal(Object n) {

30 this.field = n;

31 }

32
33 }

Figure 3.1: Example of permitted and forbidden usages of uniqueness kinds.

3.2.3 Uniqueness kinds

We introduced uniqueness kinds in Section 2.4.8. The kinds supported by Poplar0are
Unique , Maintain , Fresh and normal. We enforce the semantics of these kinds
fundamentally by tracking assignments. For example, assignment of unique references
to any variable or field is forbidden.

We use the metavariable U to denote uniqueness kinds. The relation U � U � to
indicates that a value of kind U may flow to the kind U �. It is defined as follows.

U � U Normal � Maintain Unique � Maintain Fresh � U

If a value has been passed in as an argument to a method or constructor, we will tag
its uniqueness kind, writing Uarg, enabling us to track its origin as an argument later.
This is to prevent methods from returning a unique argument as a unique return value,
for instance, which would appear to the caller as two unique values when they actually
are aliases for each other.

Example. We show an example of the use of uniqueness kinds in Figure 3.1,
indicating the errors that would be caught.

54

3.1. MIDDLEWEIGHT JAVA (MJ)

3.1 Middleweight Java (MJ)

We introduce the fundamentals of MJ briefly in this section in order to make the
Poplar0 and Poplar1 specifications more accessible. For the full details of MJ, the
reader should consult the MJ technical report [18].

In MJ, class types are denoted by C. Statement types, which include class types
but also void, are denoted by τ .

MJ programs are typed with respect to a class table, denoted by ∆. The class table
is in itself divided into a triplet of field, constructor and method tables:

∆ def= (∆f ,∆c,∆m)

These three are constructed directly from the syntax using well defined mappings.
We retain this notation in our formalisation, but we extend the field, constructor and
method tables with more information.

MJ typing judgments have the form ∆; Γ � e : C and ∆; Γ � s : τ for expressions
and statements, respectively. We use the extended judgment forms ∆; Γ � e : C : U :
l+LS!µ and ∆; Γ � s : τ +LS!ρ , respectively. These forms will be introduced below.

MJ statements are denoted by s, expressions by e, and variables by x. We have
kept these metavariables; see the syntax section below.

Subclassing relation
In our system, the subclassing relation has been unchanged from MJ. These judgments
are applied with respect to a well formed program p (to be defined).

TR-IMMEDIATE
class C1 extends C2{. . . } ∈ p

C1 ≺1 C2

TR-TRANSITIVE
C1 ≺ C2 C2 ≺ C3

C1 ≺ C3

TR-EXTENDS
C1 ≺1 C2

C1 ≺ C2

TR-REFLEXIVE

C ≺ C

3.2 Poplar0 : A Minimal Poplar

Poplar0 is the initial version of Poplar that we will formalise. Its main difference from
its larger sibling, Poplar1, is that it lacks external resources and composite properties.

We begin by formalising the fundamental concepts of Poplar in Section 3.2.1. We
then give the syntax in Section 3.2.2. Several mappings are needed to translate from
the syntax to the concepts used by our typing judgments; we give these gradually as
needed.

MJ terms can be broadly divided into three categories: expressions, promotable
expressions and statements. Statements are the basic building blocks of method bodies,
which are lists of statements separated by semicolons. They implicitly have the void
type: they do not evaluate to any value, but they may have side effects. Expressions, on
the other hand, do evaluate to some value. Promotable expressions are expressions that
may also be used as statements if they are followed by a semicolon. This is a feature
that Java inherited from C-like languages. For instance, supposed that the variable x

49

CHAPTER 3. FORMALISING POPLAR

has type C and that the method C.m returns type D. Then the expression x.m() has type
D, but if it is used as a statement, using the syntax x.m();, then the result is discarded.

We follow the MJ specification [18] in presenting Poplar typing judgments for
terms one category at a time. Expression judgments are presented in Section 3.2.7,
promotable expression judgments in Section 3.2.8, and statement judgments are pre-
sented in Section 3.2.9. Poplar queries behave like statements in many ways, but we
nevertheless present their corresponding judgments separately in Section 3.2.11.

We have simplified Poplar0 and Poplar1 further by assuming that each method or
constructor has exactly one argument. It is straightforward to generalise the systems
presented here to n-argument methods.

3.2.1 Label signatures and chaining
Labels, properties and resources

We denote labels by l and resources by r. For a given label, res(l) gives the resource
that it is sensitive to, so that it would be erased if that resource was mutated. Variables
are denoted by x. ρ is a mutation summary, a set of mutated resources. ρ is a set whose
members have the form x.r, raw(r) or any(C).r, where C is a type. We write ρ(x) to
denote {r | x.r ∈ ρ}.

For a resource, sens(C)(r) gives the set of sensitive labels that would be lost if it
was mutated. We also write

sens(Γ, ρ) def= {x.l | x.res(l) ∈ ρ ∨ (Γ � x : C ∧ C ≺ C � ∧ any(C �).res(l) ∈ ρ}

sens(Γ, ρ, x.l) def= sens(Γ, ρ) ∩ {x.l}.

The inverse function rem(Γ, ρ, l) gives the set of remaining labels after all the
resources have been mutated: rem(Γ, ρ, x.l) def= {xi.li | xi.li /∈ sens(Γ, ρ, x.l)}.

Labels that may be erased are called properties, and those that are not associated
with any resource are called tags. A resource declaration in class C of the form

1 resource r { properties @a, @b, @c; }

induces the following res and sens mappings: res(C)(@a) = {r}, res(C)(@b) =
{r}, res(C)(@c) = {r}, sens(C)(r) = {@a,@b, @c}.

In Poplar0, for simplicity, we assume that resource and label names are globally
unique.

Label signatures and chaining

LS is a label signature, written as (LS def= (LS+, LS=, LS−)). We will write LS(x) to
denote
(LS+(x), LS=(x), LS−(x)). We will write LS[x �→ y] to denote the operation of
renaming x to y, i.e. LS[x �→ y] def= (LS \ {x}) ∪ {y : LS(x)}.

Label signatures and mutation summaries describe fragments, which are sequences
of statements. In a label signature, LS+ describes labels added by a fragment, LS=

describes labels that are invariant for the fragment (both pre- and postconditions, and
not lost temporarily), and LS− describes preconditions that will be lost due to the frag-
ment. We write precond(LS) to indicate LS= ∪ LS− and postcond(LS) to indicate
LS= ∪ LS+.

50

Statement type

Label signature

Acceptable mutation

Uniqueness

Statement type for
var. write sequences

55

Monday, 16 January 2012

Formalisation summary

• Based on MJ

• Extended type system describes and
constrains the Poplar concepts

• A well-typed Poplar fragment is, when
compiled, a well-typed MJ fragment

• Soundness proof not yet done

56

Monday, 16 January 2012

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
57

Monday, 16 January 2012

34 min mark

Jardine

• A Poplar compiler, Jardine, has been implemented
by extending JKit, a Java compiler[1]

• Alexandre Pichot contributed to the grammar, parser and uniqueness
system (mainly), the rest implemented by me

• Poplar checking and generation of integration links
are implemented, except:

• Some remaining work in uniqueness handling

• Valid overriding is not checked

58

1. Pearce, David J. JKit. http://homepages.ecs.vuw.ac.nz/~djp/jkit. 2011.

Monday, 16 January 2012

http://homepages.ecs.vuw.ac.nz/~djp/jkit/
http://homepages.ecs.vuw.ac.nz/~djp/jkit/

New
system
design

(Re)generate
integration links

from queries
(automated)

Client
component

changes

Update client-side
Poplar

annotations

Service
component

changes

Update service-
side Poplar
annotations

System OK

Verify
integration

links
(automated,

optional)

Redesign
system

Fail

Succeed Fail

Succeed

Start

Verify
method

contracts
(automated)

Debug

Fail

Succeed

Compiler tasks

Implemented

Implemented

(Poplar ch
ecking sta

ge)

(Query solving stage)

59

Both of the essential stages
have been implemented.

Monday, 16 January 2012

Front end

Back end

Skeleton discovery

Skeleton builder

Type propagation

Java file reader

Type Resolution

Scope resolution

Type Checking

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Uniqueness checking

Label resolution

Poplar type checking

Query solving

New stage

Stage with nontrivial
modifications

Unchanged stage

Front end

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

Compilation pipeline

60

Monday, 16 January 2012

Poplar checking stage

• Implements the formalised Poplar type
system

• Reconstructs the type of every term and
statement, verifying that there is some way
to satisfy all label requirements

61

Monday, 16 January 2012

Query solving stage

• Uses Partial Order Planning (POP)[1,2]
to find solutions to queries - but in theory,
any planning algorithm may be used

• Replaces queries by their solutions

• We search the space of well typed
Poplar fragments

62

1. McAllester, D. and Rosenblitt, D. Systematic Nonlinear Planning. Nat. Conf. on AI, 1991
2. Nguyen, X. and Kambhampati, S. Reviving Partial Order Planning. 17 Intl. Joint Conf on AI, 2001

Monday, 16 January 2012

1.1 Size 3

1.1.1.1.1 Size 6

1.1.1.1.2.1 Size 61.1.1.1.2 Size 6

1.1.1.1 Size 5

1.1.1 Size 41 Size 2

1.1.1.1.2.1.1 Size 6

1.1.1.2 Size 5

1.1.12.1 Size 6
1.1.1.2.1.1 Size 7

Search space

• Always prefer small solutions over
large ones

• A progress measure guarantees
that we do not get stuck in an
infinite loop

• There is only ever a finite
amount of progress that can
possibly be constructed

63

Monday, 16 January 2012

Progress measure

• Expressed in terms of open
preconditions

• We make progress if we create a new
precondition set that is not a superset of a
previously achieved set

• Open preconditions are expressed in terms
of labels and types, but should
eventually also track uniqueness

64

Monday, 16 January 2012

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
65

Monday, 16 January 2012

39 min mark

Case study

• We will study JFreeChart[1], a popular Java
chart library

• Goal: demonstrate that we can use Poplar
with an existing codebase

• We will gain the freedom to refactor
JFreeChart dramatically without disturbing
API clients

66

1. Gilbert, D. et. al. JFreeChart. http://www.jfree.org/jfreechart. 2011.

Monday, 16 January 2012

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart

Using JFreeChart
CHAPTER 5. EVALUATION AND DISCUSSION

1 class ChartClient {

2 /* makeChartFrame(), makeChart(points) have been omitted */
3
4 private static JComponent makeChart(Collection<Integer> points) {

5 XYSeriesCollection dataSet = new XYSeriesCollection();

6 XYSeries s1 = new XYSeries("Gamma");

7
8 int x = 0;

9 for (Integer i : points)

10 {

11 x++;

12 s1.add(x, i);

13 }

14
15 dataSet.addSeries(s1);

16
17 JFreeChart chart = ChartFactory.createXYBarChart("Frequency",

18 "Alpha", false, "Beta", dataSet,

19 PlotOrientation.VERTICAL, true, true, false);
20
21 return new ChartPanel(chart);

22 }

23
24 public static void main(String[] args)

25 {

26 Collection<Integer> points = getData(args);

27 JFrame frame = makeChartFrame();

28 JComponent chart = makeChart(points);

29 JPanel c = new JPanel();

30 c.add(chart);

31 frame.setContentPane(c);

32 frame.setVisible(true);
33 }

34 }

Figure 5.1: Basic usage of JFreeChart

5.1.1 Using JFreeChart
Throughout our study we will use a simple program that makes use of JFreeChart
to display data in a chart. This chart is then displayed in a standard Swing JFrame.
Figure 5.1 shows an example of basic usage of the JFreeChart API.

The code in Figure 5.1 produces the chart window shown in Figure 5.2. The code
that generates the data and the JFrame has been omitted, since they are unrelated to our
point of interest here. The following steps in the JFreeChart API are of special interest.

• Two classes are involved in managing the data for a basic bar chart: a XYSeries
and an XYSeriesCollection.

• A factory method of ChartFactory is used to create the chart itself. This factory
contains a wide variety of methods to assist common use cases.

100

67

Monday, 16 January 2012

CHAPTER 5. EVALUATION AND DISCUSSION

1 class ChartClient {

2 /* makeChartFrame(), makeChart(points) have been omitted */
3
4 private static JComponent makeChart(Collection<Integer> points) {

5 XYSeriesCollection dataSet = new XYSeriesCollection();

6 XYSeries s1 = new XYSeries("Gamma");

7
8 int x = 0;

9 for (Integer i : points)

10 {

11 x++;

12 s1.add(x, i);

13 }

14
15 dataSet.addSeries(s1);

16
17 JFreeChart chart = ChartFactory.createXYBarChart("Frequency",

18 "Alpha", false, "Beta", dataSet,

19 PlotOrientation.VERTICAL, true, true, false);
20
21 return new ChartPanel(chart);

22 }

23
24 public static void main(String[] args)

25 {

26 Collection<Integer> points = getData(args);

27 JFrame frame = makeChartFrame();

28 JComponent chart = makeChart(points);

29 JPanel c = new JPanel();

30 c.add(chart);

31 frame.setContentPane(c);

32 frame.setVisible(true);
33 }

34 }

Figure 5.1: Basic usage of JFreeChart

5.1.1 Using JFreeChart
Throughout our study we will use a simple program that makes use of JFreeChart
to display data in a chart. This chart is then displayed in a standard Swing JFrame.
Figure 5.1 shows an example of basic usage of the JFreeChart API.

The code in Figure 5.1 produces the chart window shown in Figure 5.2. The code
that generates the data and the JFrame has been omitted, since they are unrelated to our
point of interest here. The following steps in the JFreeChart API are of special interest.

• Two classes are involved in managing the data for a basic bar chart: a XYSeries
and an XYSeriesCollection.

• A factory method of ChartFactory is used to create the chart itself. This factory
contains a wide variety of methods to assist common use cases.

100

Using JFreeChart

68

Monday, 16 January 2012

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {

2 // etc.
3 private static JComponent makeChart(Collection<Integer> points) {

4 XYSeries s1 = new XYSeries("Gamma");

5 //etc.
6 dataSet.addSeries(s1);

7 /* Invoke a helper method that uses a query */
8 JFreeChart chart = useFactoryIndirect(dataSet);

9 return new ChartPanel(chart);

10 }

11 private static JFreeChart useFactoryIndirect(XYSeriesCollection

dataSet)

12 dataSet: tGenChartData. {

13 String title:(tChartTitle) = "Frequency";

14 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;

15 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";

16 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";

17 boolean da:(tWithDateAxis) = false;
18 boolean gu:(tGenUrls) = false;
19 boolean tt:(tGenTooltips) = true;
20 boolean lr:(tReqLegend) = true;
21
22 /* Produce the chart using a query */
23 JFreeChart c = #produce(JFreeChart, tXYBarChart);

24 return c;

25 }

26
27 //etc.
28 }

29
30 class ChartFactory {

31 //etc.
32 public static JFreeChart createXYBarChart(String title,

33 String xAxisLabel, boolean dateAxis,

34 String yAxisLabel, IntervalXYDataset dataset,

35 PlotOrientation orientation, boolean legend,

36 boolean tooltips, boolean urls)

37 title: tChartTitle; dateAxis: tWithDateAxis;

38 xAxisLabel: tXAxisLabel; yAxisLabel: tYAxisLabel;

39 orientation: tPlotOrientation; legend: tReqLegend;

40 tooltips: tGenTooltips; dataset: tGenChartData;

41 urls: tGenUrls;

42 result: ++tXYBarChart.

43 { ... }

44 //etc.
45 }

Figure 5.3: Changes to ChartFactory and JFreeChartTest.

103

Integrating with a query

Client

Library

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {

2 // etc.
3 private static JComponent makeChart(Collection<Integer> points) {

4 XYSeries s1 = new XYSeries("Gamma");

5 //etc.
6 dataSet.addSeries(s1);

7 /* Invoke a helper method that uses a query */
8 JFreeChart chart = useFactoryIndirect(dataSet);

9 return new ChartPanel(chart);

10 }

11 private static JFreeChart useFactoryIndirect(XYSeriesCollection

dataSet)

12 dataSet: tGenChartData. {

13 String title:(tChartTitle) = "Frequency";

14 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;

15 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";

16 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";

17 boolean da:(tWithDateAxis) = false;
18 boolean gu:(tGenUrls) = false;
19 boolean tt:(tGenTooltips) = true;
20 boolean lr:(tReqLegend) = true;
21
22 /* Produce the chart using a query */
23 JFreeChart c = #produce(JFreeChart, tXYBarChart);

24 return c;

25 }

26
27 //etc.
28 }

29
30 class ChartFactory {

31 //etc.
32 public static JFreeChart createXYBarChart(String title,

33 String xAxisLabel, boolean dateAxis,

34 String yAxisLabel, IntervalXYDataset dataset,

35 PlotOrientation orientation, boolean legend,

36 boolean tooltips, boolean urls)

37 title: tChartTitle; dateAxis: tWithDateAxis;

38 xAxisLabel: tXAxisLabel; yAxisLabel: tYAxisLabel;

39 orientation: tPlotOrientation; legend: tReqLegend;

40 tooltips: tGenTooltips; dataset: tGenChartData;

41 urls: tGenUrls;

42 result: ++tXYBarChart.

43 { ... }

44 //etc.
45 }

Figure 5.3: Changes to ChartFactory and JFreeChartTest.

103

69

Monday, 16 January 2012

CHAPTER 5. EVALUATION AND DISCUSSION

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4 5 6 7 8

createXYBarChart[4]

res 0 1 2 3 4 5 6 7 8

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(da,boolean,tWithDateAxis)

(gu,boolean,tGenUrls)

(tt,boolean,tGenTooltips)

(po,PlotOrientation,tPlotOrientation)

(a,String,tYAxisLabel)

(dataSet,IntervalXYDataset,tGenChartData)

(lr,boolean,tReqLegend)

(gen_0,JFreeChart,tXYBarChart)

1 JFreeChart gen_0 = ChartFactory.createXYBarChart(title, f, da, a,
dataSet, po, lr, tt, gu);

Figure 5.4: The solution to the Poplar query in Figure 5.3. Boxes labelled 0 to 8 correspond to
method parameters. res corresponds to the return value.

104

Result

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {

2 // etc.
3 private static JComponent makeChart(Collection<Integer> points) {

4 XYSeries s1 = new XYSeries("Gamma");

5 //etc.
6 dataSet.addSeries(s1);

7 /* Invoke a helper method that uses a query */
8 JFreeChart chart = useFactoryIndirect(dataSet);

9 return new ChartPanel(chart);

10 }

11 private static JFreeChart useFactoryIndirect(XYSeriesCollection

dataSet)

12 dataSet: tGenChartData. {

13 String title:(tChartTitle) = "Frequency";

14 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;

15 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";

16 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";

17 boolean da:(tWithDateAxis) = false;
18 boolean gu:(tGenUrls) = false;
19 boolean tt:(tGenTooltips) = true;
20 boolean lr:(tReqLegend) = true;
21
22 /* Produce the chart using a query */
23 JFreeChart c = #produce(JFreeChart, tXYBarChart);

24 return c;

25 }

26
27 //etc.
28 }

29
30 class ChartFactory {

31 //etc.
32 public static JFreeChart createXYBarChart(String title,

33 String xAxisLabel, boolean dateAxis,

34 String yAxisLabel, IntervalXYDataset dataset,

35 PlotOrientation orientation, boolean legend,

36 boolean tooltips, boolean urls)

37 title: tChartTitle; dateAxis: tWithDateAxis;

38 xAxisLabel: tXAxisLabel; yAxisLabel: tYAxisLabel;

39 orientation: tPlotOrientation; legend: tReqLegend;

40 tooltips: tGenTooltips; dataset: tGenChartData;

41 urls: tGenUrls;

42 result: ++tXYBarChart.

43 { ... }

44 //etc.
45 }

Figure 5.3: Changes to ChartFactory and JFreeChartTest.

103

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {

2 // etc.
3 private static JComponent makeChart(Collection<Integer> points) {

4 XYSeries s1 = new XYSeries("Gamma");

5 //etc.
6 dataSet.addSeries(s1);

7 /* Invoke a helper method that uses a query */
8 JFreeChart chart = useFactoryIndirect(dataSet);

9 return new ChartPanel(chart);

10 }

11 private static JFreeChart useFactoryIndirect(XYSeriesCollection

dataSet)

12 dataSet: tGenChartData. {

13 String title:(tChartTitle) = "Frequency";

14 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;

15 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";

16 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";

17 boolean da:(tWithDateAxis) = false;
18 boolean gu:(tGenUrls) = false;
19 boolean tt:(tGenTooltips) = true;
20 boolean lr:(tReqLegend) = true;
21
22 /* Produce the chart using a query */
23 JFreeChart c = #produce(JFreeChart, tXYBarChart);

24 return c;

25 }

26
27 //etc.
28 }

29
30 class ChartFactory {

31 //etc.
32 public static JFreeChart createXYBarChart(String title,

33 String xAxisLabel, boolean dateAxis,

34 String yAxisLabel, IntervalXYDataset dataset,

35 PlotOrientation orientation, boolean legend,

36 boolean tooltips, boolean urls)

37 title: tChartTitle; dateAxis: tWithDateAxis;

38 xAxisLabel: tXAxisLabel; yAxisLabel: tYAxisLabel;

39 orientation: tPlotOrientation; legend: tReqLegend;

40 tooltips: tGenTooltips; dataset: tGenChartData;

41 urls: tGenUrls;

42 result: ++tXYBarChart.

43 { ... }

44 //etc.
45 }

Figure 5.3: Changes to ChartFactory and JFreeChartTest.

103

Client Library

70

Monday, 16 January 2012

A parameter object

CHAPTER 5. EVALUATION AND DISCUSSION

1 public class ChartParameters {

2
3 tag(ChartParameters) populated;

4
5 String chartTitle;

6 boolean withDateAxis, urls, tooltips, legend;

7
8 public ChartParameters(String chartTitle, boolean withDateAxis,

9 boolean urls, boolean tooltips, boolean legend)

10 result: ++populated; chartTitle: tChartTitle;

11 withDateAxis: tWithDateAxis; urls: tGenUrls;

12 tooltips: tGenTooltips; legend: tReqLegend. {

13 this.chartTitle = chartTitle; this.withDateAxis = withDateAxis;

14 this.urls = urls; this.tooltips = tooltips;

15 this.legend = legend;

16
17 }

18 }

19
20 public class ChartFactory {

21 //etc.
22
23 public static JFreeChart createXYBarChart(ChartParameters cp,

24 String xAxisLabel, String yAxisLabel,

25 IntervalXYDataset dataset, PlotOrientation orientation)

26
27 cp: populated;

28 xAxisLabel: tXAxisLabel;

29 yAxisLabel: tYAxisLabel;

30 dataset: tGenChartData;

31 result: ++tXYBarChart. { ... }

32
33 //etc.
34 }

Figure 5.6: The ChartParameters class and the modified ChartFactory API.

106

• Change library API

• Instead of passing several
parameters individually, pass
them in a containing object

• This refactoring is
recommended by Fowler1 for
certain situations

71

1. Fowler, M. Refactoring: Improving the Design of Existing Code. 1999.

Monday, 16 January 2012

5.1. CASE STUDY: REFACTORING JFREECHART

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4

createXYBarChart[4]

res 0 1 2 3 4

0 1 2 3 4

ChartParameters[5]

res 0 1 2 3 4

(da,boolean,tWithDateAxis)

(title,String,tChartTitle)

(gu,boolean,tGenUrls)

(lr,boolean,tReqLegend)

(a,String,tYAxisLabel)

(po,PlotOrientation,AnyLabel())

(tt,boolean,tGenTooltips)

(f,String,tXAxisLabel)

(dataSet,IntervalXYDataset,tGenChartData)

(gen_0,JFreeChart,tXYBarChart)

(gen_1,ChartParameters,populated)

1 ChartParameters gen_1 = new ChartParameters(title, da, gu, tt, lr);
2 JFreeChart gen_0 = ChartFactory.createXYBarChart(gen_1, f, a, dataSet,

po);

Figure 5.7: An updated solution that makes use of the changes from Figure 5.6.

107

• The client is updated
correctly without any manual
changes

Result

72

Monday, 16 January 2012

Converting parameters to state
5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartFactory {

2 //etc.
3 composite @factoryConfigured = (@c1, @c2, @c3);

4
5 public ChartFactory() result: ++ready. { }

6
7 resource urlConfig {

8 properties @c1;

9 private static boolean currentUrls;

10 }

11 resource legendConfig {

12 properties @c2;

13 private static boolean currentLegend;

14 }

15 resource tooltipsConfig {

16 properties @c3;

17 private static boolean currentTooltips;

18 }

19
20 public void setGenUrls(boolean urls)

21 urls: tGenUrls;

22 this: ready, ++@c1. {

23 currentUrls = urls;

24 }

25 public void setGenTooltips(boolean tooltips)

26 tooltips: tGenTooltips;

27 this: ready, ++@c2. {

28 currentTooltips = tooltips;

29 }

30 public void setReqLegend(boolean legend)

31 legend: tReqLegend;

32 this: ready, ++@c3. {

33 currentLegend = legend;

34 }

35 public void resetConfiguration() mutates urlConfig, legendConfig,

tooltipsConfig: {

36 currentLegend = false;
37 currentTooltips = false;
38 currentUrls = false;
39 }

40
41 public JFreeChart createXYBarChart(ChartParameters cp,

42 String xAxisLabel, String yAxisLabel, IntervalXYDataset dataset,

43 PlotOrientation orientation)

44 cp: populated; xAxisLabel: tXAxisLabel;

45 yAxisLabel: tYAxisLabel; dataset: tGenChartData;

46 orientation: tPlotOrientation; this: @factoryConfigured;

47 result: ++tXYBarChart.

48 { ... }

49
50 //etc.
51 }

Figure 5.8: Introducing three new fields, resources and properties to manage permanent state

109

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartFactory {

2 //etc.
3 composite @factoryConfigured = (@c1, @c2, @c3);

4
5 public ChartFactory() result: ++ready. { }

6
7 resource urlConfig {

8 properties @c1;

9 private static boolean currentUrls;

10 }

11 resource legendConfig {

12 properties @c2;

13 private static boolean currentLegend;

14 }

15 resource tooltipsConfig {

16 properties @c3;

17 private static boolean currentTooltips;

18 }

19
20 public void setGenUrls(boolean urls)

21 urls: tGenUrls;

22 this: ready, ++@c1. {

23 currentUrls = urls;

24 }

25 public void setGenTooltips(boolean tooltips)

26 tooltips: tGenTooltips;

27 this: ready, ++@c2. {

28 currentTooltips = tooltips;

29 }

30 public void setReqLegend(boolean legend)

31 legend: tReqLegend;

32 this: ready, ++@c3. {

33 currentLegend = legend;

34 }

35 public void resetConfiguration() mutates urlConfig, legendConfig,

tooltipsConfig: {

36 currentLegend = false;
37 currentTooltips = false;
38 currentUrls = false;
39 }

40
41 public JFreeChart createXYBarChart(ChartParameters cp,

42 String xAxisLabel, String yAxisLabel, IntervalXYDataset dataset,

43 PlotOrientation orientation)

44 cp: populated; xAxisLabel: tXAxisLabel;

45 yAxisLabel: tYAxisLabel; dataset: tGenChartData;

46 orientation: tPlotOrientation; this: @factoryConfigured;

47 result: ++tXYBarChart.

48 { ... }

49
50 //etc.
51 }

Figure 5.8: Introducing three new fields, resources and properties to manage permanent state

109

• Instead of passing parameters, we assign default values (template
data) to the factory class

• We require these to be initialised before the factory may be used.

73

Monday, 16 January 2012

CHAPTER 5. EVALUATION AND DISCUSSION

recv 0

setGenTooltips[9]

res recv 0

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

0 1

ChartParameters[8]

res 0 1

recv 0

setReqLegend[5]

res recv 0

start(dummy)[2]

ChartFactory[6]

res

recv 0

setGenUrls[7]

res recv 0

finish(dummy)[3]

(gen_1,ChartFactory,@c2)

(gen_0,JFreeChart,tXYBarChart)

(gen_2,ChartParameters,populated)

(gen_1,ChartFactory,@c3)

(po,PlotOrientation,tPlotOrientation)

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(title,String,tChartTitle)

(f,String,tXAxisLabel)

(tt,boolean,tGenTooltips)

(lr,boolean,tReqLegend)

(da,boolean,tWithDateAxis)

(gu,boolean,tGenUrls)

(gen_1,ChartFactory,ready)

(gen_1,ChartFactory,ready) (gen_1,ChartFactory,ready)

(gen_1,ChartFactory,@c1)

1 ChartParameters gen_2 = new ChartParameters(title, da);
2 ChartFactory gen_1 = new ChartFactory();
3 gen_1.setReqLegend(lr);
4 gen_1.setGenUrls(gu);
5 gen_1.setGenTooltips(tt);
6 JFreeChart gen_0 = gen_1.createXYBarChart(gen_2, f, a, dataSet, po);

Figure 5.9: The second updated solution with the changes from Figure 5.8. The three boolean
parameters are now stored in properties and corresponding resources. Blue boxes are static
methods or constructors, red boxes are instance methods. recv is short for receiver (i.e. this).
Note that this partially ordered solution can be linearised in many different ways, which are all
valid.

110

Result

• The client is updated
correctly without any
manual changes

CHAPTER 5. EVALUATION AND DISCUSSION

recv 0

setGenTooltips[9]

res recv 0

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

0 1

ChartParameters[8]

res 0 1

recv 0

setReqLegend[5]

res recv 0

start(dummy)[2]

ChartFactory[6]

res

recv 0

setGenUrls[7]

res recv 0

finish(dummy)[3]

(gen_1,ChartFactory,@c2)

(gen_0,JFreeChart,tXYBarChart)

(gen_2,ChartParameters,populated)

(gen_1,ChartFactory,@c3)

(po,PlotOrientation,tPlotOrientation)

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(title,String,tChartTitle)

(f,String,tXAxisLabel)

(tt,boolean,tGenTooltips)

(lr,boolean,tReqLegend)

(da,boolean,tWithDateAxis)

(gu,boolean,tGenUrls)

(gen_1,ChartFactory,ready)

(gen_1,ChartFactory,ready) (gen_1,ChartFactory,ready)

(gen_1,ChartFactory,@c1)

1 ChartParameters gen_2 = new ChartParameters(title, da);
2 ChartFactory gen_1 = new ChartFactory();
3 gen_1.setReqLegend(lr);
4 gen_1.setGenUrls(gu);
5 gen_1.setGenTooltips(tt);
6 JFreeChart gen_0 = gen_1.createXYBarChart(gen_2, f, a, dataSet, po);

Figure 5.9: The second updated solution with the changes from Figure 5.8. The three boolean
parameters are now stored in properties and corresponding resources. Blue boxes are static
methods or constructors, red boxes are instance methods. recv is short for receiver (i.e. this).
Note that this partially ordered solution can be linearised in many different ways, which are all
valid.

110

74

Monday, 16 January 2012

Configuring the factory manually5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {
2 //...
3 private static void configureFactory(ChartFactory cf)
4 cf: +@factoryConfigured. {
5 cf.setGenTooltips(true);
6 cf.setGenUrls(false);
7 cf.setReqLegend(true);
8 cf.resetConfiguration(); //This line violates the method’s

contract
9 }

10 //...
11 }

Figure 5.10: Configuring the factory explicitly. This method is invalid with respect to its speci-
fication, since it erases the @factoryConfigured property on the final line.

0 1

ChartParameters[5]

res 0 1

0

configureFactory[7]

res 0

start(dummy)[2]

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

ChartFactory[15]

res

finish(dummy)[3]

(gen_3,ChartParameters,populated)(gen_4,ChartFactory,(@c1, @c2, @c3))

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(da,boolean,tWithDateAxis)

(po,PlotOrientation,tPlotOrientation)

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(gen_2,JFreeChart,tXYBarChart)

(gen_4,ChartFactory,AnyLabel())

1 ChartFactory gen_4 = new ChartFactory();
2 ChartClient.configureFactory(gen_4);
3 ChartParameters gen_3 = new ChartParameters();
4 JFreeChart gen_2 = gen_4.createXYBarChart(gen_3, f, a, po, gen_3);

Figure 5.11: When we have removed the seeded violation in Figure 5.10, we find this solution.
The method configureFactory is now used in place of the individual setter methods. Note that
this partially ordered solution can be linearised in many different ways, which are all valid.

111

• Instead of relying on Poplar to find configuration parameters, we supply
them manually in the client

• This method takes precedence because it results in a shorter solution

• We introduce an error on line 8 (for demo purposes) that will be
detected by Poplar

75

Monday, 16 January 2012

5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {
2 //...
3 private static void configureFactory(ChartFactory cf)
4 cf: +@factoryConfigured. {
5 cf.setGenTooltips(true);
6 cf.setGenUrls(false);
7 cf.setReqLegend(true);
8 cf.resetConfiguration(); //This line violates the method’s

contract
9 }

10 //...
11 }

Figure 5.10: Configuring the factory explicitly. This method is invalid with respect to its speci-
fication, since it erases the @factoryConfigured property on the final line.

0 1

ChartParameters[5]

res 0 1

0

configureFactory[7]

res 0

start(dummy)[2]

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

ChartFactory[15]

res

finish(dummy)[3]

(gen_3,ChartParameters,populated)(gen_4,ChartFactory,(@c1, @c2, @c3))

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(da,boolean,tWithDateAxis)

(po,PlotOrientation,tPlotOrientation)

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(gen_2,JFreeChart,tXYBarChart)

(gen_4,ChartFactory,AnyLabel())

1 ChartFactory gen_4 = new ChartFactory();
2 ChartClient.configureFactory(gen_4);
3 ChartParameters gen_3 = new ChartParameters();
4 JFreeChart gen_2 = gen_4.createXYBarChart(gen_3, f, a, po, gen_3);

Figure 5.11: When we have removed the seeded violation in Figure 5.10, we find this solution.
The method configureFactory is now used in place of the individual setter methods. Note that
this partially ordered solution can be linearised in many different ways, which are all valid.

111

• Once we have removed the
error, the client is updated
correctly without any manual
changes

• Note that this shorter
solution is preferred over the
previous (longer) solution,
which is still valid

Result

76

Monday, 16 January 2012

Case study results

• We have demonstrated that Poplar can be
used with existing Java libraries to permit a
wide range of refactorings without
disturbing clients, once the initial cost of
introducing queries has been paid.

77

Monday, 16 January 2012

Brute force Poplar conversion

• By generating enough unique label names, we can
always convert an ordinary Java method
call or field access into a query with a
predictable result

• However, protecting the established state and
designing resources well may not always be
possible with a “naive conversion”

78

Monday, 16 January 2012

Discussion

• Achievements

• Limitations

79

Monday, 16 January 2012

Remark

• Three roles of a label: external
semantic contract, temporal contract,
internal semantic contract

• For each individual label, the external
semantic contract must be preserved
or strengthened across versions of
components

80

Monday, 16 January 2012

This is very attractive, because now we have gone from several high level and large scale
constraints (on the level of methods, fields) to a more fine grained constraint (on the level of
semantic units)

Achievements

• The goal has been to allow Java
components to evolve while remaining
integrated

• Sensitivities

• Syntactic/structural changes

• Semantic changes

• Temporal constraint changes

81

Monday, 16 January 2012

Achievements: evolvability

• Structural and temporal changes
become almost irrelevant.

• As long as we can construct a path from
the starting state to the requested goal
state, we can compensate for these
changes (see JFreeChart study)

• Semantic changes to methods and
fields become irrelevant, if labels
are preserved correctly

82

Monday, 16 January 2012

“Almost irrelevant” - in the sense that some changes may lead to other solutions being found
first, which may not be irrelevant

Evolution consequences

83

Service/client side Disturbance to
mutation summaries

Manual client
changes necessary

Solutions
may change

Compilation may be
impossible

Add property ✔

Remove property ✔ ✔

Strengthen label contract
(ext. semantic)

Weaken label contract (ext.
semantic) ✔

Move property to
different resource

If explicit method
calls exist

If explicit method
calls exist ✔ ✔

Change temporal
contracts ✔ ✔

Change internal
property contracts

Add mutation to
mut. summary

If called explicitly If called explicitly ✔ ✔

Remove mutation
from mut. summary ✔

Monday, 16 January 2012

Achivements: design and implementation

• Object-oriented principles:
encapsulation and polymorphism of
properties, resources

• Ability to describe and work with
real software systems

• Rigorous specification

• Usable implementation

84

Monday, 16 January 2012

Limitations

• Imprecision

• Uniqueness system is too restrictive and
imprecise

• Sometimes the return type from a method
is expected to be downcast to a different
type (see Prospector[1])

85

1. Mandelin, D., Xu, L., Kimelman, D., and Bodik, R. Jungloid Mining: Helping to Navigate the API Jungle.
PLDI 2005.

Monday, 16 January 2012

Limitations (2)

• Impossible to request negative effects or prevent
labels from being established

• We may simulate negative state by creating a
special property that erases state when
“established”

• Method effects and preconditions must be
expressed as conjunctions of atomic facts

• Disjunctions of conjunctions would be very
simple to implement

86

Monday, 16 January 2012

Limitations (3)

• Effort in writing annotations (however,
protocol mining is a well studied problem)

• Data flow between Java and Poplar

• With a more accurate aliasing system, the
user might be able to annotate all code
(no pure Java)

• With interop, warnings/guarantees/errors
should be easy to implement

87

Monday, 16 January 2012

Also: a possibility is a static dataflow analysis tool to produce information in auxiliary files,
which warn the user about some possible violations

More related work (selected)

88

1. Alfonso, E.J. Automatic Protocol-conformance Recommendations. OOPSLA 2011 poster.

2. Batory, D. and Geraci, B.J. Composition Validity and Subjectivity in GenVoca Generators.
TSE 1997.

3. Gabel, M. and Su, Z. Symbolic Mining of Temporal Specifications. ICSE 2008 (and many
others)

4. Kiczales, G.J. et al. Aspect-Oriented Programming. 1997

5. Ireland, A. and Stark, J. Combining Proof Plans with Partial Order Planning for Imperative
Program Synthesis. ASE 2006.

6. Zaremski, A.M. and Wing, J. Specification Matching of Software Components. TSE 1997.

7. Becker, S. et al. Towards an Engineering Approach to Component Adaptation. LNCS
3938, 2006. (and many others)

8. Jaspan, C and Aldrich, J. Checking Framework Interactions with Relationships. ECOOP
2009.

Monday, 16 January 2012

Best location in the story?

Poplar publications

• Rejected

• ECOOP 2011, POPL 2011, ESOP 2012, ...

• Many reviewers liked the general approach, but it was probably too
early

• Accepted

• Nyström-Persson, J and Honiden, Shinichi.
Poplar: Java Composition with Labels and AI
Planning. Proc. of the Workshop on Free
Composition (FREECO) at Onward! 2011.

• Planned

• New paper about design, formalism (possibly CBSE, SPLASH, TSE)

89

Monday, 16 January 2012

Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
90

Monday, 16 January 2012

53 min mark (!)

Conclusion

• By combining constraints from various
well-studied domains, we can express Java
code in such a way that AI planning
generates meaningful results

• Hypothesis confirmed

• AI planning, labels, and a typestate-like
formalism may be combined to yield an
automatic integration system that is
robust to evolution

91

Monday, 16 January 2012

Some future work

• Accuracy improvements: better aliasing system?

• Finish basic implementation (override checking)

• Implement integration link verification?

• Subresources

• Resource links (needed in practice for many
examples, e.g. JDBC)

• Quality metrics for solutions?

• Study more libraries, write applications

92

Monday, 16 January 2012

Thanks

Yukino Baba, Valentina Baljak, Lodewijk Bergmans, Christoph Bockish,
Shigeru Chiba, Daisuke Fukuchi, Levent Gürgen, Masami Hagiya, Ichiro Hasuo,

Shinichi Honiden, Liyang Hu, Zhenjiang Hu, Atsushi Igarashi,
Fuyuki Ishikawa, Ciera Jaspan, Fan Jiang, Gabriel Keeble-Gagnére,

Adrian Klein, Benjamin Klöpper, Hidehiko Masuhara, Maivi Nyström,
Kyoko Oda, David J Pearce, Tommy Persson, Alexandre Pichot,
Christian Sommer, Yoshinori Tanabe, Kenji Tei, Susumu Toriumi,

Florian Wagner, Yoriko Yamamura

The members of the Honiden lab, and my friends in Japan and abroad

You

93

Monday, 16 January 2012

Extra slides

94

Monday, 16 January 2012

Novelty

• No existing label-based argument selection
in Java (to the best of my knowledge)

• No existing combination of typestate and
AI planning

• Query-based integration has similarities
with aspect-oriented programming, but is
fundamentally novel

95

Monday, 16 January 2012

Design

96

Monday, 16 January 2012

Implicit mutations

public class Socket {

 resource speed {
 properties @fast, @slow;
 int dataSpeed;

 void setFast() mutates this.speed:
 this: ++@fast. {
 dataSpeed = 100;
 }
 void setSlow() mutates this.speed:
 this: ++@slow. {
 dataSpeed = 10;
 }
 }
}

• Convenience feature:
No need to declare
“mutates this.x” if the
method is declared
inside the resource -
this is implicit

97

Monday, 16 January 2012

Constrained fields

98

• Field labels depend on
owning object’s labels

• Implicitly always unique

class MessageSender {

 resource state {
 properties @ready, @notReady;

 Socket s:((@ready)->(@open),(@notReady)->(@closed));

 void open() this: ++@ready. {
 s = new Socket();
 s.open(); //the final state of s is validated
 }
}

class Socket {
 resource state {
 properties @open, @closed;

 void open() this: ++@open. { ... }
 }
}

Monday, 16 January 2012

The drop statement

99

• Explicitly delete labels
of ‘this’

• Identify a precise point
where a label is lost

• Relaxes expectations on
constrained fields

• Possibly unnecessary??

class MessageSender {

 resource state {
 properties @ready, @notReady;

 Socket s:((@ready)->(@open),(@notReady)->(@closed));

 void close() this: -@ready. {
 s.close();
 drop @ready;
 s = new Socket();
 }
}

class Socket {
 resource state {
 properties @open, @closed;

 void Socket() result: ++@closed. {...}
 }
}

Monday, 16 January 2012

Formalisation

100

Monday, 16 January 2012

The chaining operation

101

3.2. POPLAR0 : A MINIMAL POPLAR

Chaining, or sequential composition, is one of the central operations on label signa-
tures. The (LS1, ρ1)⊕(LS2, ρ2) operation chains label signatures, for the case where a
fragment described by (LS1, ρ1) is evaluted immediately before a fragment described
by (LS2, ρ2). Note that chaining of label signatures is defined with respect to cor-
responding mutation summaries and also produces a tuple of a label signature and a
mutation summary. First we will define a binary predicate (LS1, ρ1) ⊕ (LS2, ρ2) ok
which indicates whether it is valid to chain the two signatures or not.

Γ � (LS1, ρ1)⊕(LS2, ρ2) ok ⇐⇒ ∀l ∈ (LS=
2 ∪LS−2).l ∈ (LS=

1 ∪LS+
1)∨l /∈ (sens(Γ, ρ1)∪LS−1)

This predicate ensures that for each fragment, its preconditions are either immedi-
ately satisfied by the preceding fragment that we wish to adjoin, or its preconditions are
not erased by the preceding fragment (and may then be satisfied by some other, even
earlier fragment).

Given that (LS1, ρ1)⊕ (LS2, ρ2) ok, we define (LS1, ρ1)⊕ (LS2, ρ2) as

Γ � (LS1, ρ1)⊕ (LS2, ρ2)
def= ((LS+, LS=, LS−), ρ) where

LS+
def
=(rem(Γ, ρ2, LS+

1) ∪ LS+
2)) \(LS−2 ∪ LS=

1 ∪ LS−1)

etm
def
=sens(Γ, ρ1, LS=

2 \ LS=
1) ∪ sens(Γ, ρ2, LS=

1 \ LS=
2)

LS=
def
=(LS=

1 ∪ LS=
2) \ etm \(LS+

1 ∪ LS−2)

LS−
def
=(LS

−
2 ∪ LS

−
1 ∪ etm) \LS+

1

ρ
def
=ρ1 ∪ ρ2

The intuition behind this operation is as follows. For LS+ we want to capture added
labels that remain ”added”, for LS= invariant labels that remain invariant, and for LS−
any subtracted preconditions. For LS+, what are the new labels that will be added if the
second fragment is executed before the first? The labels added by the first fragment will
only remain ”added” if they are not lost to the mutations in the second fragment. The
rem function computes this set. The labels added by the second fragment will clearly
remain added since we are not executing anything after this addition, that we know
of. So we take the union of these two sets, but we must also remove the subtractions
of the second fragment and the invariants of the first, since it’s possible for the same
label to be in, for instance, the invariants of the first fragment and the additions of the
second. In this case it has clearly not been added, being required to exist before the
first fragment executes. Hence the subtraction of sets at the end of the LS+ expression.
LS= and LS− follow a similar pattern. The sens function in the expression for LS−
computes those labels that would have been invariants from the first fragment, but that
are lost to mutations in the second fragment. Thus they migrate from invariants to
subtractions when the chaining is performed.

We say that a label signature LS is well-formed if LS+, LS− and LS= are disjoint
sets. A pair LS, ρ is well-formed if, for any e.l ∈ LS−, e.res(l) ∈ ρ. In this case, we
write ∆ � (LS, ρ) ok.

51

Monday, 16 January 2012

Note: this has been slightly altered from the version in the thesis.
Discuss alternative notions of well-formedness

Disjunctive composition

CHAPTER 3. FORMALISING POPLAR

Proof. We prove this by case analysis of the origin of any non-empty intersection of
the three sets.

First, assume that LS= ∩ LS+ �= ∅. Then, from definitions, either LS=
1 ∩ LS+

2 �= ∅
or LS+

1 ∩ LS=
2 �= ∅. But LS=

1 is excluded from LS+, and LS+
1 is excluded from LS=,

so none of these sets can be in LS= ∩ LS+. Hence, LS+ ∩ LS= = ∅.
Second, assume that LS=∩LS− �= ∅. Note that rem(Γ, ρ1∪ρ2, LS=

1)∩sens(Γ, ρ2, LS=
1) =

∅. So LS= ∩ LS− can have no members originating in LS=
1 . LS−2 is excluded from

LS=, so LS−2 ∩ LS=
1 can contribute no members to LS= ∩ LS−. The only remain-

ing case is members from LS=
2 ∩ LS−1 . But if Γ � (LS1, ρ1) ⊕ (LS2, ρ2) ok, then

LS=
2 ∩ LS−1 = ∅. Thus, LS= ∩ LS− = ∅.
Third, assume that LS− ∩ LS+ �= ∅. LS+

1 is excluded from LS−, so this is only
possible if LS+

2 has a non-empty intersection with LS−1 or with sens(ρ2, LS=
1). But

LS=
1 and LS−1 are excluded from LS+, so any such elements are not part of LS+∩LS−.

Therefore, LS+ ∩ LS− = ∅.

Note also that trivially, ∆ � (LS1, ρ1) ok ∧ ∆ � (LS2, ρ2) ok =⇒ ∆ �
(LS1, ρ1)⊕ (LS2, ρ2) ok.

Remark. Our definition of well-formedness insists that each label is either an
addition, an invariant, or a subtraction, and never, for a given variable, a member of
more than one of the three sets in a label signature. This is not the only conceivable
notion of well-formedness. Consider the following class.

1 class C {
2 resource r {
3 properties @a;
4 }
5 void m() this: @a. { ... }
6 void n() mutates this.r: { ... }
7 void o() this: +@a. { ... }
8 void sequence() mutates this.r: this: -@a. {
9 m(); n(); o();

10 }
11 }

The sequence m(); n(); o(); needs @a as an initial precondition for m. The property
is lost by n but re-established by o. Our formalisation considers the overall effect of
the method sequence to be a subtraction of @a even though it is re-established in
the end.. An alternative way of reasoning about it would be to permit a non-empty
intersection between the addition and subtraction sets of label signatures. Then one
could express that a label is lost and re-established. We leave an investigation of this
alternative design for future work.

In addition to chaining of label signatures, we will need disjunctive composition
for the case where either one of two fragments might execute. We use this to type if ...
else -statements.

(LS1, ρ1)⊗ (LS2, ρ2)
def
= ((LS+

1 ∩ LS+
2 ,

LS=
1 ∩ LS=

2 ,

(LS−1 ∪ LS−2 ∪ (LS=
2 \ LS=

1) ∪ (LS=
1 \ LS=

2)) \ (LS+
1 ∪ LS+

2)

We can easily see that (LS1, ρ1)⊗(LS2, ρ2) remains well formed under alternation.

52
102

Monday, 16 January 2012

Property/resource polymorphism

103

class Base {
 resource r {
 properties @p;
 int i;
 void makeP() this: ++@p. {
 i = 0;
 } }
}

class E1 extends Base {
 resource r {
 int j;
 void makeP() this: ++@p. {
 i = 0;
 j = 0; //stronger def.
 } }
}

class E2 extends Base {
 resource r {
 String x;
 void makeP() this: ++@p. {
 x = “”; //different def.
 } }
}

• Overriding resources can add
more state, more properties

• Overriding properties can
redefine

• Internal predicate

• Temporal constraints (within
limits)

• Properties cannot be moved to a
different resource

Monday, 16 January 2012

Prior/posterior expanded signatures

• Full specification of the
state of a method
before and after
execution

• Domain: fields in this,
arguments, receiver
(same as LS)

• Note: in general,
mutations are only
permitted on these
expressions

104

class MessageSender {

 resource state {
 properties @ready, @notReady;

 Socket s:((@ready)->(@open),
(@notReady)->(@closed));

 void open() this: ++@ready. {
 s = new Socket();
 s.open(); //the final state of s
is validated
 }
}

open() prior: (this: {}, this.s: {})
open() posterior: (this: {@ready},
this.s:{@open})

Monday, 16 January 2012

One exception is if we have a “fresh” expression. Mutations on these are always permitted.

3 resource access levels

105

class Demo {

 resource r {
 properties @a, @b;
 int x;

 //m in raw mode because of ++@a
 void m() this: ++@a, @b -@c. {
 x = 0; //@a and @b not checked
 }

 //m2 not in raw mode
 void m2() this: +@a, @b, -@c. {
 m(); //@a, @b, @c are checked
 }
 } //end of resource r

 //m3 has no access to r
 void m3() this: +@a, @b, -@c. {
 m(); //invalid because of -@c
 }

}

• None (weakest)

• Mutates

• Can destroy properties

• Raw (with ++@p)
(strongest)

• Can write data directly in
resource

• ++ and = (invariants) are
unchecked

Monday, 16 January 2012

Benefits of the resource/property model

• The structure of resources, in terms of properties
and their relations, can often change without
disturbing method contracts

• Natural fit for AI planning algorithms

• A “state” is a set of labels

• Client queries can match on a subset

106

Monday, 16 January 2012

Implementation

107

Monday, 16 January 2012

Design decision: where to insert new stages?

Front end

Back end

Skeleton discovery

Skeleton builder

Type propagation

Java file reader

Type Resolution

Scope resolution

Type Checking

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Uniqueness checking

Label resolution

Poplar type checking

Query solving

New stage

Stage with nontrivial
modifications

Unchanged stage

Front end

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

• Early stage: Java classes remain very
close to source code form, weak
invariants provided and expected

• Late stage: compilation almost
finished, strong invariants provided
and expected

• Our new stages are inserted at a
middle point, after Java type checking
has been done

108

Monday, 16 January 2012

JKit

• Java compiler for research purposes, by David J
Pearce

• Chosen as a foundation because it:

• Compiles Java 5 (almost) fully

• Is relatively recent

• Has a straightforward design

• Written in Java

109

Monday, 16 January 2012

Integration link verification (future)

• Store information about Poplar signatures in Java
class files as class file attributes (standard feature)

• In client classes, store assumptions about
service side method contracts

• In service classes, store the provided contracts

• To verify a link, simply check these assumptions
against each other (using the “valid overriding”
relation)

A straightforward implementation strategy:

110

Monday, 16 January 2012

Conclusion

111

Monday, 16 January 2012

Resource links and external resources
(future?)

112

class ItemList {
 resource list {
 properties @empty, @full;
 link ext[Item].hosted;
 List<Item> data;
 }
 resource[Item] hosted {
 properties @inList;
 }

 void add(Item i) mutates list:
 i: ++@inList. {
 data.add(i);
 }
 void empty() mutates list,
 any(Item).ext[ItemList].hosted:
 this: ++@empty. {
 data.removeAll();
 }
}

• External resource: one
class provides properties for
another class

• Link: mutation of x would
implicitly also be a mutation
of ext[D].hosted

• Limitation: we cannot
automatically identify the
external object that is
operated on

Monday, 16 January 2012

Connection

Statement

ResultSet

warningsstate transaction

results

cursorresults

connection

@open

@dirty

@open @closed

@first

@last

warnings

rowUpdates

Link External resource

Class @property resource

Legend

Connection

Statement

ResultSet

warningsstate transaction

results

cursorresults

connection

@open

@dirty

@open @closed

@first

@last

warnings

rowUpdates

Link External resource

Class @property resource

Legend

Modelling JDBC
with resource links

113

Monday, 16 January 2012

Drafts

114

Monday, 16 January 2012

public class Socket {
 resource state {
 	 properties @raw, @bound, @open, @closed;

 	 String remoteHost;	
 	 boolean isConnected = false;
 	 int connectionSpeed = 0;
 	
 	 Socket() this: ++@raw. { }
	
 	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound. { }
	
 	 void connect() this: -@bound, ++@open. { }
	
 	 void send(byte[] data) this: @open; data: ++sentData. { }
	
 	 void receive(byte[] data, int offset, int max) this: open; offset:
receiveOffset; max: receiveMaxlen;
 	 data: ++receivedData. { }
	
 	 void close () this:-@open, ++@closed. { }
 	
 	 void printInformation() this: @open. {
 	 	 println("Connected to " + remoteHost.toString() + " at " +
connectionSpeed + " kB/s");
 	 }
 }
} 115

Monday, 16 January 2012

