
Extending the Java Programming Language 
for Evolvable Component Integration

Johan T. Nyström Persson
Honiden Laboratory

Department of Computer Science, University of Tokyo

Thesis supervisor: Shinichi Honiden
Head of thesis committee: Masami Hagiya

January 16, 2012

Poplar

1

Monday, 16 January 2012



Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
2

Monday, 16 January 2012



Java components

• Component-based and object-oriented 
software are now dominant paradigms

• Java is an extremely successful OO 
language

• However, essential difficulties remain in 
integrating components and 
preserving integrations

• In this work: component = set of Java 
classes
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Depending on a component

public class Socket {
    Socket() {}
    void bind(SocketAddress bindPoint) {}
    void connect() {}
    void send(byte[] data) {}
    void receive(byte[] data, int offset, int max) 
{}
    void close () {}    	
}

• What knowledge does a programmer need 
in order to make use of this Socket API? 

• What must remain unchanged in the future, 
in order for a client class to recompile correctly?

class Client {
    void m(SocketAddress sa) {
        Socket s = new Socket();
        s.bind(sa);
        s.connect();
        s.send(data);
        s.close();
    }
}

4
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Temporal assumptions (protocol[1]/typestate[2])

public class Socket {
    	 Socket() {}
    	 void bind(SocketAddress bindPoint) {}
    	 void connect() {}
    	 void send(byte[] data) {}
    	 void receive(byte[] data, int offset, int max) {}
    	 void close () {}    	
}

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

bind

new Socket

• In general, methods of objects cannot 
be called at any time. Sequential 
constraints apply.

• We may be assuming that calling 
send is valid once we have called 
connect, and so on

5

1.  Yellin, Daniel M and Strom, Robert E. Protocol Specifications and Component Adaptors. TOPLAS,
1997.
2. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004.
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Semantic assumptions (method contract)

public class Socket {
    	 Socket() {}
    	 void bind(SocketAddress bindPoint) {}
    	 void connect() {}
    	 void send(byte[] data) {}
    	 void receive(byte[] data, int offset, int max) {}
    	 void close () {}    	
}

• For each possible combination of input arguments, does the method 
have a well defined behaviour? 

• We expect that...

• Data passed to the send method will be sent to the connected 
remote socket

• receive stores data in the array passed as the first parameter

• No files will be deleted from the hard drive (etc.)
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Dependencies

• Constraints on future versions of service components

• Temporal constraints must not be strengthened, only 
weakened. 

• For semantic contracts, the substitution principle[1] 
must be valid

• Only weaker preconditions or stronger postconditions 
are acceptable changes

• Syntactic/structural changes, such as renaming or 
incompatible refactoring, are unacceptable
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1. Liskov, B.  and Wing, J. A Behavioural Notion of Subtyping. TOPLAS 1994
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The problem

• Essential conflict between evolution and 
composition

• Components need to evolve post-deployment[1]

• Evolution of semantic contracts/
temporal contracts may be necessary 
but this threatens integration

• A lot of manual work becomes necessary

• “Procedure calls are the assembly language of 
software interconnection”[2]
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1.  Dig, D. and Johnson, R. The Role of Refactorings in API Evolution. ICSM 2005. 
2. Shaw, M. Procedure Calls are the Assembly Language of Software Interconnection. 1993.
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Key concept

• Instead of relying on “the assembly language 
of procedure interconnections”, generate 
integration code automatically!

• Re-generate after evolution

• Specify integrations with a minimum of 
information so that the chance of finding 
a solution is high
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Related work

• AI planning

• Typestate and protocols

• Labelled argument selection

• Prospector (“Jungloid mining”)

• Effect systems
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Related work: AI planning[1]

• AI planning is the problem of assembling a 
sequence of actions to convert an initial state to a 
goal state

• Intuitively, this is very close to the problem of 
constructing valid API usage patterns

• It also seems to resemble what programmers 
must do manually...

• How can we describe the domain so as to 
generate meaningful, safe Java fragments using AI 
planning?

1.1.1.1.1 Size 6

11
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Approach

• Find a way to describe Java code as 
an AI planning domain, in such a way 
that the results make sense and are useful

• Borrow ideas from many well-studied fields 
to constrain and inform planning

• Use simple techniques to demonstrate 
the overall proof of concept
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Related: protocol and typestate systems

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

bind

new Socket

• Well studied domain since the 1980’s, 
especially popular for OO languages 
in the last 10 years[1,2,3]

• Typestate analysis constrains API 
clients to use valid sequences only

• Use typestate to constrain AI 
planning
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1. Strom, R.E. and Yemini, S. Typestate: A Prog. Lang. Concept for Enhancing Software Reliability. TSE 1986
2. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004
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Related: Prospector

• Prospector[1] is an interactive tool that constructs 
code fragments by matching argument types with 
return types

• A valid codebase is mined in advance to extract 
patterns

• Patterns are composed according to type 
compatibility

• User requests a type to be generated in 
a context

• Borrow this idea, but avoid the need to mine a codebase
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1. Mandelin, D., Xu, L., Kimelman, D., and Bodik, R. Jungloid Mining: Helping to Navigate the API Jungle. 
PLDI 2005.
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Related: labelled argument selection

• Some languages (e.g. Lisp, ADA) allow for 
argument reordering and omission based on 
labels

• Labelled lambda calculus[1,2] allows for 
automatic argument selection from a set 
based on labels

• This is more powerful than Prospector, which 
only uses type information

• What if we use both types and labels to select?
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1. Garrigue, Jacques.  Label-Selective Lambda Calculi and Transformation Calculi. 1994
2. Garrigue, Jacques and Ait-Kaci, Hassan. The Typed Polymorphic Label-Selective Lambda-Calculus. 
POPL 1994.
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Related: effect systems

• Effect systems are a well studied class of type 
systems that annotate terms with their 
side effects 

• For OO languages, systems that reason about 
heap reads and writes in terms of polymorphic 
regions have been well studied[1,2]

• Use this idea to constrain AI planning 
and avoid unwanted interference
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Hypothesis

“A combination of AI planning, labelled variables
and temporal specifications, when applied to the

Java programming language, can yield a fully
automatic integration technique that is robust

to evolution.”

(Robust to evolution: gracefully handles cases that 
cannot be handled by standard Java, either finding 
a solution automatically or correctly reporting an 

error)
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Note: even though we are investigating this approach in the context of Java, it should be 
straightforward to transfer it to other imperative OO languages. For instance, C#.
Strong typing is good, reduces ambiguity, so I expect C++ will not be as easy.



Contribution

• A Java extension, Poplar

• Fully automatic component integration 
using declarative specifications

• Also: checking that methods conform 
to their contracts

• Modular analysis and compilation

• Formalisation, implementation, case study
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Example - socket client

20

public class Socket {
    	 Socket() {}
    	 void connect() {}
}

public class Client {
    void m(SocketAddress a) 
      a: remoteAddress. {
        Socket s = new Socket();
        s.connect();
    }
}

public class Socket {
    	 Socket() {}
       void configure(boolean compress) {}
    	 void connect() {}    
}

public class Client {
    void m(SocketAddress a) 
      a: remoteAddress. {
        Socket s = new Socket();
        s.configure(false);
        s.connect();
    }
}

V. 1 V. 2

Monday, 16 January 2012



Annotate with labels and queries

21

public class Socket {
    resource state {
    	 properties @open, @raw;

    	 Socket() this: ++@raw. { } 	
    	 void connect() this: ++@open. { }	
    }
}

public class Socket {
    resource state {
    	 properties @open, @raw, @configured;

    	 Socket() this: ++@raw. { } 	
       void configure(boolean compr) 
         compr: tCompression; 
         this: ++@configured. { }
    	 void connect() 
         this: @configured, ++@open. { }	
    }
}

public class Client {
    void m() {
        boolean b:(tCompression) = false;
        Socket s = #produce(Socket, @open);
    }
}
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Generated code

22

finish(dummy)[3]

 

Socket[6]

res

recv 0

configure[5]

res recv 0

(gen_0,Socket,AnyLabel())

start(dummy)[2]

(b,boolean,tCompression)

recv

connect[4]

res recv

(gen_0,Socket,Unresolved@configured)

(gen_0,Socket,@open)

start(dummy)[2]

finish(dummy)[3]

recv

connect[4]

res recv

 

Socket[5]

res

(gen_0,Socket,@open)

(gen_0,Socket,Unresolved@raw)

V. 1 V. 2

For both versions, we can generate correct
integration code without changing the client 

at all.
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Design overview

• Labels/state names from typestate, 
protocols, labelled lambda calculus

• Queries from Prospector

• Resources from Boyland/Greenhouse 
effect system

• Uniqueness kinds from typestate, effect 
systems, many others

23
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Labels

• Most central element in the design

• Multiple roles

• Protocol/temporal state

• Internal semantic contract (predicate on 
object’s private state)

• External semantic contract (anything)

• Two kinds: properties and tags

24
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public class Socket {
    resource state {
    	properties @raw, @bound,
         @open, @closed;
        	
    	Socket() 
         this: ++@raw. { ... } 	
    	void bind(SocketAddress bindPoint) 
         this: -@raw, ++@bound. { ... }	
    	void connect() 
         this: -@bound, ++@open. { ... }

	 //...
    }
}

Properties (generalised typestate)

• Destructible 
labels, defined for a 
class

• Essential in order to 
encode temporal 
constraints

• Prefixed with @

• Gives each object 
potentially 2n “states” 
for n properties

• Associated with a 
resource

-@x: precondition (lost)
++@x: postcondition (added)

25
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public class Socket {
    resource state {
    	properties @raw, @bound,
         @open, @closed;
        	 //...

    void send(byte[] data) 
    this: @open; data: ++sentData.{ ... }

	 //...
    }
}

Tags

• Non-destructible 
labels

• For irreversible 
effects (e.g. sending 
data) 

• For identifying 
constants

26
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Queries

• Purpose: express integration goals

• Two kinds

• Produce - request a value of a given 
type with a set of labels

• Transform - request additional labels 
for a given variable

• Idea from Prospector (which has an 
equivalent of produce)

27
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Produce-queries

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;

    	 Socket() this: ++@raw. { } 	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
         bindPoint:remoteAddress. { }	
    	 void connect() this: -@bound, ++@open. { }	
    	 void send(byte[] data) this: @open; data: ++sentData. { }	
    }
}

public class Client {
    void m(SocketAddress a) 
      a: remoteAddress. {      
        Socket s = #produce(Socket, @open);
    }
}

public class Client {
    void m(SocketAddress a) 
      a: remoteAddress. {
        Socket s = new Socket();
        s.bind(a);
        s.connect();
    }
}

Generate and substitute

(The specifics of code generation will be discussed later)
28
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Transform-queries

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;

    	 Socket() this: ++@raw. { } 	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
         bindPoint:remoteAddress. { }	
    	 void connect() this: -@bound, ++@open. { }	
    	 void send(byte[] data) this: @open; data: ++sentData. { }	
    }
}

public class Client {
    void m(Socket s) s: @open. {
       byte[] d = new byte[10000];
       setData(d);
       #transform(d, sentData);
    }
}

public class Client {
    void m(Socket s) s: @open. {
       byte[] d = new byte[10000];
       setData(d);
       s.send(d);
    }
}

Generate and substitute

29
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Label signatures

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;

    	 Socket() this: ++@raw. { } 	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
         bindPoint:remoteAddress. { }	
    	 void connect() this: -@bound, ++@open. { }	
    	 void send(byte[] data) this: @open; data: ++sentData. { }	
    }
}

public class SocketUser {
    void m(Socket s) s: -@raw, +@bound, +@open. {
       s.bind(getAddress());
       s.connect();       
    }
}

++@x: directly added property
+@x: indirectly added property (checkable!)

30
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Lower bound gives flexibility

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed, @fast;

    	 Socket() this: ++@raw. { } 	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound;
         bindPoint:remoteAddress. { }	
    	 void connect() this: -@bound, ++@open, +@fast. { }	
    	 void send(byte[] data) this: @open; data: ++sentData. { }	
    }
}

public class SocketUser { //@fast is missing
    void m(Socket s) s: -@raw, +@bound, +@open. {
       s.bind(getAddress());
       s.connect();       
    }
}

The m method contract does not need to report all 
established labels, as long as preconditions (-@x) and 

invariants (@x) are fully reported
31
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Resources

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, 
@closed;

    	 String remoteHost = null;	
    	 boolean isConnected = false;
    	 int connectionSpeed = 0;

   //...
    }

    resource speed {
      properties @fast, @slow;
      int dataSpeed; 
  
      void setFast() this: ++@fast. {
        dataSpeed = 100;
      }
      void setSlow() this: ++@slow. {
        dataSpeed = 10;
      }
    }       
}

• Directly inspired by abstract 
regions in Boyland-
Greenhouse system - use to 
avoid unwanted 
interference

• Group related data and 
properties

• Properties may be a 
predicate on the internal 
data in the resource => 
internal semantic contract

• When the data in the 
resource is changed, we say 
that the resource is mutated

32
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Resource mutations must be declared
public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;
    	 String remoteHost = null;	
    	 boolean isConnected = false;

   //...
    }

    resource speed {
      properties @fast, @slow;
      int dataSpeed; 
      void setFast() this: ++@fast. {
        dataSpeed = 100;
      }
      void setSlow() this: ++@slow. {
        dataSpeed = 10;
      }
    }  

    void disconnectAndStop() mutates this.speed, this.state:
      this: ++@halted. {
      this.dataSpeed = 0; //Poplar will force these writes to be reported
      this.isConnected = false;
      this.remoteHost = null;
    }     
} 33
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Note that direct writes to these fields are only permitted in the current formalisation if we 
also have a ++@x property for that resource.
Note implicit mutations here.



Mutation summary

• Interpretation of a resource mutation: all 
properties in that resource are lost, 
except for those specified in the label signature 

• A set of resource mutations is called a mutation 
summary. This is:

• An upper bound on lost labels

• Compositional in the same way as label 
signatures

34
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Method contract = label signature (lower bound) + 
mutation summary (upper bound)
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Putting it together

public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;
       
    	 Socket() this: ++@raw. { } 	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound. { }	
    	 void connect() this: -@bound, ++@open. { }	
    	 void send(byte[] data) this: @open; data: ++sentData. { }	
    }
    resource speed {
      properties @fast, @slow;
  
      void setFast() this: ++@fast. { }
      void setSlow() this: ++@slow. { }
    }       
}

class SocketUser {
    void m(Socket s) mutates s.state, s.speed:
      s: -@raw, +@open, +@fast. {
      s.bind(getAddress());
      s.connect();
      s.setFast();
    }

} 36
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Uniqueness

• Aliasing is an essential difficulty with 
languages that have pointers

• Given two pointers, do they point to the 
same objects?

• Simple approach: uniqueness kinds - classify 
references according to assumptions and 
guarantees[1,2]

37

1. Minsky, N. Towards Alias-Free Pointers. ECOOP 1996
2. Boyland, J. Alias Burying: Unique Variables Without Destructive Reads. Softw. Pract & Exp., 2000
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Uniqueness kinds

Kind Assumption Guarantee

Normal
None (may be 

aliased) None

Unique Is unique
Remains 
unique

Maintain
None (may be 

aliased)
Remains 
unique

38
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Uniqueness and mutations

class SocketUser {
    void m(Socket s) mutates s.state, s.speed:
      s: maintain, -@raw, +@open, +@fast. { 
      s.bind(getAddress());
      s.connect();
      s.setFast();
    }

    void withUnique(Socket u) mutates u.state, u.speed:
      u: unique. {      
      m(s);
    }
    void withAliases(Socket a) mutates any(Socket).state, 
      any(Socket).speed: { //a is implicitly a “normal” variable
      m(a);
    }
    void withNew() { //No need to report anything
      m(new Socket());
    }
}

The reported mutations are different depending on the 
uniqueness kinds of the variables passed to a method.39
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Design - summary

• Labels as a least unit of specification

• Resources group properties and related 
state

• Label signatures give a lower bound on 
established state

• Mutation summaries give an upper bound 
on erased labels

• Uniqueness kinds to handle aliasing

40
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Design - justification

• Sufficient features to describe Java code 
as an AI planning domain for practical 
purposes (to be demonstrated)

• Necessary features

• Temporal constraints (properties) must be 
addressed

• Interference (resources) must be addressed

• Queries needed to request an integration

• Aliasing (uniqueness kinds) must be addressed

41
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make it simple, second, to make use of opportunities to make components more evolvable.



Comparison

42

System Poplar B/G Effect Typestate/Fugue Labelled LC Prospector

Polymorphic regions ✔ ✔

Subregions ✔

Effect summaries ✔ ✔

Temporal state names ✔ ✔

Labelled arg. selection ✔ ✔

State for individual frames ✔

Type-based queries ✔ ✔

Search/AI planning ✔ ✔

Unique pointers ✔ ✔ ✔

Static checking ✔ ✔ ✔

Monday, 16 January 2012

Poplar is not a complete replacement for any of the systems we have borrowed from, rather it 
is a compromise between different designs



Another perspective
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Poplar works by breaking down the contract of each
method into small units, and reasoning about these

individually
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Workflow (ideal)
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New 
system 
design

(Re)generate 
integration links 

from queries 
(automated)

Client 
component  

changes

Update client-side 
Poplar 

annotations

Service 
component 

changes

Update service-
side Poplar 
annotations

System OK

Verify 
integration 

links 
(automated, 

optional)

Redesign 
system

Fail

Succeed Fail

Succeed

Start

Verify 
method 

contracts 
(automated)

Debug

Fail

Succeed

3 main compiler tasks.
“Verify integration links” 
is an optional stage that
is not essential in order to 
make use of Poplar.
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MJ

• Core calculus for an imperative fragment of 
Java[1, 2]

• Models mutable state and Java’s block 
structure faithfully

• Valid subset of Java

• Boyland/Greenhouse effect system has 
already been studied in the context of MJ

47

1. Bierman, G.M., Parkinson, M.J., and Pitts, A.M. MJ: An Imperative Core Calculus for Java and Java with 
Effects. Tech report Cambridge U., 2003
2. Bierman, G.M. and Parkinson, M.J. Effects and Effect Inference for a Core Java Calculus. WOOD 2003.
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Big picture

MJ types

Labels

Uniqueness

Well-typed 
Poplar term

Bounded and Composable Temporal Specifications with Labels, Resources and Effects 13

value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅) �

�

i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (postcond(LS), ∅, ∅) �

�

i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this �→ {@a}, x �→ {@a}, f �→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this �→ {@c}, x �→ {@a}, f �→ {@d}}, ∅, ∅})

Mutation of fresh variables is always permitted (since nobody else could have a ref-
erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.
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erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.
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value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅) �

�

i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (postcond(LS), ∅, ∅) �

�

i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this �→ {@a}, x �→ {@a}, f �→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this �→ {@c}, x �→ {@a}, f �→ {@d}}, ∅, ∅})

Mutation of fresh variables is always permitted (since nobody else could have a ref-
erence to it). Mutations of local fields and variables are permitted, but will be regulated
by the prior and posterior expanded signatures of methods, as well as by intermediate
label signatures during method execution.
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U-CSUPER
∆;Γ � � e1 : C�

1 : U1 ∆c(C
�) = C1 : Uarg U1 � Uarg

Γ (this) = C Γ = Γ � � {this : C : Fresh } invocationOk(Γ, {e1})
∆;Γ � super(e1); uok

U-VARWRITE
∆;Γ � x : C : U

∆;Γ � e : C� : U �
U

� = Normal ∨ (U � = Fresh ∧ e �= x
�) U

� � U

∆;Γ � x = e; uok

U-FIELDWRITE
∆;Γ � e : C ∆f (C)(f)(∅) = C

� : U � : l : ρ
∆;Γ � e

�� : C�� : U ��
U

� = Normal ∨ (U � = Fresh ∧ e �= x
�) U

�� � U
�

∆;Γ � e.f = e
��; uok

U-COBJECT
C ≺1 Object

∆;Γ, this : C : Fresh � super(); uok

U-PRODUCE
∆;Γ � x

� : U �
U � U

�
U �= Unique

∆;Γ � x
� = #produce(C, l, U); uok

3.4 Checking algorithms

4 Case study: Evolving a JFreeChart client in Java

4.1 Using JFreeChart

Throughout our study we will use a simple program that makes use of JFreeChart to
display data in a chart. This chart is then displayed in a standard Swing JFrame. Figure 4
shows an example of basic usage of the JFreeChart API.

4.2 Constructing the chart using a Poplar query

We would like to construct the chart using a query instead of an explicit call to a fac-
tory method, in anticipation of future evolution. We may convert an explicit method
call into a query using an almost completely mechanical process. As a minimum, we
need to be able to identify each argument of the method, as well as the result being
passed back. In order to do this, we introduce the changes shown in Figure 5. Chart-

Client acquires the additional method useFactoryIndirect. In ChartFactory, we give
a label to each argument and identify the result by the tag tXYBarChart. Here we pre-
fix these labels with codet to indicate that they are tags, and to separate them from
the variable names. In useFactoryIndirect, we add local variables with the necessary
labels, which supplies the arguments needed to invoke the method. We then use the
query #produce(JFreeChart, tXYBarChart) instead of invoking the factory method
directly.

The solution that was found by Jardine for this query is shown in Figure 6. This
simply shows that the arguments were selected in the expected way and a method invo-
cation was generated. In this figure, the blue rectangle corresponds to the static method
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TE-VAR
∆ � Γ ok � ∆ ok

∆; Γ, x : C : U � x : C : U : l� + LS
where LS = {∅, {x= : l

�}, ∅} and

TE-SUBLABELS
∆; Γ � e : C : U : l + LS!ρ

∆; Γ � e : C : U : l
�
+ LS!rho

where l
� ⊆ l

TE-FIELDACCESSTHIS
∆; Γ � this : C : U : l + LS

∆; Γ � this.f : C1 : U
�
1 : l1 + LS2

where LS1 = {∅, {this.f= : l1}, ∅}

and U
�
1 = uniqueReturn(U2, U1), (LS2, ρ2) = (LS, ∅)⊕ (LS1, ∅)

TE-FIELDACCESS
∆; Γ � e : C : U : l + LS

∆f (C)(f)(l) = C1 : U1 : l1 e �= x

∆; Γ � e.f : C1 : U
�
1 : l1 + LS

where U
�
1 = uniqueReturn(U2, U1)

TE-NULL
∆ � C ok ∆ � Γ ok � ∆ ok

∆; Γ � null : C

TE-UPCAST
∆; Γ � e : C2 C2 ≺ C1 ∆ � C1

∆; Γ � (C1)e : C1

TE-DOWNCAST
∆; Γ � e : C2 C1 ≺ C2 ∆ � C1

∆; Γ � (C1)e : C1

TE-STUPIDCAST
∆; Γ � e : C2 C2 �≺ C1

C1 �≺ C2 ∆ � C1

∆; Γ � (C1)e : C1

3.2.8 Typing judgments for promotable expressions

TE-METHOD
∆; Γ � e

� : C
� : U

� : precond(LS)(rec) + LS�!ρ�
C1 ≺ Ca

∆; Γ � e1 : C1 : U1 : precond(LS)(arg1) + LS1!ρ1

∆m(C�)(m) = (Urec)Ca : Ua → τ : Uret + LS!ρ
∆ � e!ρ(this) ok ∆ � e1!ρ(arg1) ok invocationOk(Γ, {e�

, e1})
U

� � Urec U1 � Ua U
�
ret = uniqueReturn(U �

, Uret)
(LS��

, ρ��) = (LS�
, ρ�)⊕ (LS1, ρ1)⊕ invsub(LS, ρ, e

�
, C

�
, U

�
, e1, C1, U1)

∆; Γ � e
�
.m(e1) : τ : U

�
ret : postcond(LS)(ret) + LS�� \ direct(C�

.m)!ρ��

TE-NEW
∆; Γ � e1 : C

�
1 : precond(LS)(arg1) : U

�
1 + LS�!ρ�

∆c(C) = C1 : U1 + LS!ρ C
�
1 ≺ C1

∆ � e1!ρ(arg1) ok invocationOk(Γ, {e1}) U
�
1 � U1

(LS��
, ρ��) = ((LS�

, ρ�)⊕ cnsub(LS, ρ, e1, C1, U1))

∆; Γ � new C(e1) : C : postcond(LS)(ret) : Fresh + LS��!ρ��

invocationOk(Γ, e) def= ∀ei((Γ � ei : Unique ∨ Γ � ei : Fresh ) =⇒ ei /∈

(e \ ei) ∧ Γ � ei : Fresh =⇒ ei �= x)

uniqueReturn(Urec, Uret)
def=

�
Maintain if Urec ∈ {Maintain, Normal} and Uret = Unique
Uret otherwise
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• Formalisation based on MJ 

• Poplar types = MJ (Java) types + 
uniqueness kinds + labels and 
effects

• Well-typed Poplar terms are 
guaranteed to use labels 
correctly (to be defined)
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Formalisation structure

• Judgments for

• Well-formed class

• Well-formed overriding

• Poplar typing for statements, expressions

• Labels, mutations, uniqueness

• Valid solution to a query
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Composing method contracts (chaining)

void	
  configure(Address	
  a)	
  mutates	
  this.configuration:
	
  	
  this:	
  +@configured,	
  @notConnected.	
  {	
  ...	
  }

void	
  connect(Address	
  a)	
  mutates	
  this.connection:	
  
	
  	
  this:	
  +@connected,	
  @configured;	
  

mutates	
  this.connection,	
  this.configuration:
	
  	
  this:	
  +@connected,	
  +@configured;

+

=

When statements are executed in sequence, we can obtain a 
contract for the resulting fragment

configure(a);
connect(a);
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Soundness

• Establishment of a label: being created by a 
method annotated with ++t or ++@p

• Use of a label: being assumed as a precondition 
for some statement

• A Poplar fragment is sound if all labels 
for all values are

• Established before they are used

• Not erased between the point of establishment 
and the point of use
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Soundness (2)

• I believe that the Poplar type system is 
sound - a proof is left for future work

• One possibility is altering the semantics 
to model creation and destruction of 
labels directly
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Technical achievements

• Polymorphism of properties 
(subclasses can redefine or extend 
meaning)

• Polymorphism of resources 
(subclasses can redefine, add new 
properties)

• Modular checking and compilation
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A limitation

• Properties that are overloaded by 
subclasses are handled in a 
restricted way

• Must be established in all class 
frames before they can be used

• Some typestate systems[1] track 
states in each frame 
independently 
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class Base {
 resource r {
  properties @p;
  int i;
  void makeP() this: ++@p. {
    i = 0;
  } }
}

class E1 extends Base {
 resource r {
   int j;
   //Stronger invariant for @p
   void makeP() this: ++@p. {
     super.makeP();   
     useP(); //Invalid!
     j = 0;
   } 

   void useP() this: @p. {
   } }
}

1. Deline, R. and Fähndrich, M. Typestates for Objects. ECOOP 2004.
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(Very small) example

3.2. POPLAR0 : A MINIMAL POPLAR

written to some fields may be less restrictive. It is also used when direct addition

methods override other direct addition methods (see rule T-MBODY). Note that the

user is not expected to write drop statements manually. The checker will insert them

as required.

Statement sequences

MJ has two rules for statement sequences, TS-INTRO for sequencing where the first

statement is a local variable declaration, and TS-SEQ for all other sequences. This

approach changes the typing context appropriately to include the new variable in TS-

INTRO. We have retained this approach, adjusted it to handle our effects appropriately,

and added two new rules for sequencing of statements, TS-SEQVARWRITE for vari-

able writes and TS-SEQFIELDWRITE for field writes. Field writes and variable writes

are thus constrained twice: first in the judgments that type the write statements them-

selves, and then in the sequencing with other statements. The reason for this is that

when a write such as x = e is carried out, the expression e may already have its own

label signature and mutation summary associated with it by the type system. As the

expression is assigned to x, we must now associate the existing LS and ρ with the vari-

able x instead of with the expression e. This is done by the helper functions lf low and

rflow in these sequencing judgments. The exact same principle applies to field writes.

In these rules we also check that the mutations that will be carried out on the writ-

ten field or variable after the write (in program execution order) are acceptable, by

using the ∆; Γ � e!ρ ok judgment.This prevents, for instance, the future mutation of a

resource of a return value from some function call. Such mutations must be prohibited

since they may place other objects in inconsistent states.

TS-SEQ

∆; Γ � s1 : void + LS1!ρ1 s1 �= C x
s1 �= x = e ∆; Γ � s2 . . . sn : τ + LS2!ρ2

{r | raw(r) ∈ ρ1} ∩ res(precond(LS2)) = ∅
∆; Γ � s1s2 . . . sn : τ + (LS1, ρ1)⊕ (LS2, ρ2)

TS-SEQVARWRITE

∆; Γ � x = e; : void + LS1!ρ1

∆; Γ � s2 . . . sn : τ + LS2!ρ2

∆; Γ � e!ρ2(x) ok ∆; Γ � e : C : U
(LS1, ρ1)⊕ (lf low(LS2, x, e), rflow(ρ2, x, e, C, U)) = (LS, ρ)

∆; Γ � x = e; s2 . . . sn : τ + LS!ρ

TS-SEQFIELDWRITE

∆; Γ � this.f = e; : void + LS1!ρ1

∆; Γ � s2 . . . sn : τ + LS2!ρ2

∆; Γ � e!ρ2(this.f) ok ∆; Γ � e : C : U
(LS1, ρ1)⊕ (lf low(LS2, this.f, e), rflow(ρ2, this.f, e, C, U)) = (LS, ρ)

∆; Γ � x = e; s2 . . . sn : τ + LS!ρ

TS-INTRO

∆; Γ, x : C : U � s1 . . . sn : τ + LS!ρ

∆; Γ � C x:U; s1 . . . sn : τ + (LS \ LS(x))!(ρ \ ρ(x))
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ceptable to mutate the resources r of the expression e. It is defined as follows.

∆; Γ � e!∅ ok ∆; Γ � x!r ok ∆; Γ � this.f !r ok
∆; Γ � e!r ok

∆; Γ � (C)e!r ok

∆; Γ � e : C : Fresh
∆; Γ � e!r ok

Invocation substitutions are used to bind the label signatures and mutation sum-
maries of methods and constructors to concrete expressions when they are invoked.
Method types contain placeholders like ret, this (to indicate return value and receiver)
and the names of the arguments from the point of view of the method. After binding
them with invsub, we obtain method signatures that correspond to the caller side view
of a method invocation. Note that the mutation summary is adjusted depending on
whether the inputs may be aliased or not.

invsub(LS, ρ, er, Cr, Ur, ea, Ca, Ua) def=

(invsub(LS, er, ea), invsub(ρ, er, Cr, Ur, ea, Ca, Ua))

invsub(LS, er, ea) def= lf low(lf low(LS, rec, er), arg, ea))

invsub(ρ, er, Cr, Ur, ea, Ca, Ua) def= rflow(rflow(ρ, rec, er, Cr, Ur), arg, ea, Ca, Ua))

cnsub(LS, ρ, ea, Ca, Ua) def= (rflow(ρ, arg, ea, Ca, Ua), lf low(LS, arg, ea))

lf low(LS, e, e�) def=
�

LS[e �→ e�] if e = this.f or e = x

LS otherwise

rflow(ρ, e, e�, C, U) def=






ρ[e �→ any(C)] if U = Maintain or U = Normal
ρ[e �→ this.f ] if e = this.f and U /∈ {Maintain , Normal }
ρ[e �→ x] if e = x and U /∈ {Maintain , Normal }
ρ otherwise

3.2.7 Typing judgments for expressions

Generally, typing judgments take the following form: ∆; Γ � e : C : U : l + LS!τ ,
where C is the type of the expression, U is a uniqueness kind, l is the set of labels
associated with it (at its point of declaration), LS is the label signature associated with
evaluating the expression, and τ is the mutation summary associated with evaluating
the expression. Sometimes we will abbreviate this rather long judgment for the sake of
brevity, when not all information is needed. For instance, we may write ∆; Γ � e : U
or ∆; Γ � e : C.

Many of the typing judgments use the chaining operation (LS1, ρ1) ⊕ (LS2, ρ2)
(see Section 3.2.1. We remind the reader that each time we make use of this operation,
we also implicitly require that (LS1, ρ1) ⊕ (LS2, ρ2) ok, since otherwise the former
operation is undefined. For the sake of brevity we do not spell this out explicitly.
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1 class C {

2 Object field;

3 void start(Object u, Object m, Object n)

4 u: unique; m: maintain. {

5 toUnique(u);

6 toMaintain(u);

7 toNormal(u); //Forbidden
8
9 toUnique(m); //Forbidden

10 toMaintain(m);

11 toNormal(m); //Forbidden
12
13 toUnique(n); //Forbidden
14 toMaintain(n);

15 toNormal(n);

16 }

17
18 Object makeFresh() result: unique. {

19 Object f = new C();

20 return f; //Fresh becomes unique
21 }

22
23 void toUnique(Object u) u: unique. {

24 this.field = u; //Forbidden
25 }

26 void toMaintain(Object m) m: maintain. {

27 this.field = u; //Forbidden
28 }

29 void toNormal(Object n) {

30 this.field = n;

31 }

32
33 }

Figure 3.1: Example of permitted and forbidden usages of uniqueness kinds.

3.2.3 Uniqueness kinds

We introduced uniqueness kinds in Section 2.4.8. The kinds supported by Poplar0are
Unique , Maintain , Fresh and normal. We enforce the semantics of these kinds
fundamentally by tracking assignments. For example, assignment of unique references
to any variable or field is forbidden.

We use the metavariable U to denote uniqueness kinds. The relation U � U � to
indicates that a value of kind U may flow to the kind U �. It is defined as follows.

U � U Normal � Maintain Unique � Maintain Fresh � U

If a value has been passed in as an argument to a method or constructor, we will tag
its uniqueness kind, writing Uarg, enabling us to track its origin as an argument later.
This is to prevent methods from returning a unique argument as a unique return value,
for instance, which would appear to the caller as two unique values when they actually
are aliases for each other.

Example. We show an example of the use of uniqueness kinds in Figure 3.1,
indicating the errors that would be caught.
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3.1 Middleweight Java (MJ)

We introduce the fundamentals of MJ briefly in this section in order to make the
Poplar0 and Poplar1 specifications more accessible. For the full details of MJ, the
reader should consult the MJ technical report [18].

In MJ, class types are denoted by C. Statement types, which include class types
but also void, are denoted by τ .

MJ programs are typed with respect to a class table, denoted by ∆. The class table
is in itself divided into a triplet of field, constructor and method tables:

∆ def= (∆f ,∆c,∆m)

These three are constructed directly from the syntax using well defined mappings.
We retain this notation in our formalisation, but we extend the field, constructor and
method tables with more information.

MJ typing judgments have the form ∆; Γ � e : C and ∆; Γ � s : τ for expressions
and statements, respectively. We use the extended judgment forms ∆; Γ � e : C : U :
l+LS!µ and ∆; Γ � s : τ +LS!ρ , respectively. These forms will be introduced below.

MJ statements are denoted by s, expressions by e, and variables by x. We have
kept these metavariables; see the syntax section below.

Subclassing relation
In our system, the subclassing relation has been unchanged from MJ. These judgments
are applied with respect to a well formed program p (to be defined).

TR-IMMEDIATE
class C1 extends C2{. . . } ∈ p

C1 ≺1 C2

TR-TRANSITIVE
C1 ≺ C2 C2 ≺ C3

C1 ≺ C3

TR-EXTENDS
C1 ≺1 C2

C1 ≺ C2

TR-REFLEXIVE

C ≺ C

3.2 Poplar0 : A Minimal Poplar

Poplar0 is the initial version of Poplar that we will formalise. Its main difference from
its larger sibling, Poplar1, is that it lacks external resources and composite properties.

We begin by formalising the fundamental concepts of Poplar in Section 3.2.1. We
then give the syntax in Section 3.2.2. Several mappings are needed to translate from
the syntax to the concepts used by our typing judgments; we give these gradually as
needed.

MJ terms can be broadly divided into three categories: expressions, promotable
expressions and statements. Statements are the basic building blocks of method bodies,
which are lists of statements separated by semicolons. They implicitly have the void
type: they do not evaluate to any value, but they may have side effects. Expressions, on
the other hand, do evaluate to some value. Promotable expressions are expressions that
may also be used as statements if they are followed by a semicolon. This is a feature
that Java inherited from C-like languages. For instance, supposed that the variable x
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has type C and that the method C.m returns type D. Then the expression x.m() has type
D, but if it is used as a statement, using the syntax x.m();, then the result is discarded.

We follow the MJ specification [18] in presenting Poplar typing judgments for
terms one category at a time. Expression judgments are presented in Section 3.2.7,
promotable expression judgments in Section 3.2.8, and statement judgments are pre-
sented in Section 3.2.9. Poplar queries behave like statements in many ways, but we
nevertheless present their corresponding judgments separately in Section 3.2.11.

We have simplified Poplar0 and Poplar1 further by assuming that each method or
constructor has exactly one argument. It is straightforward to generalise the systems
presented here to n-argument methods.

3.2.1 Label signatures and chaining
Labels, properties and resources

We denote labels by l and resources by r. For a given label, res(l) gives the resource
that it is sensitive to, so that it would be erased if that resource was mutated. Variables
are denoted by x. ρ is a mutation summary, a set of mutated resources. ρ is a set whose
members have the form x.r, raw(r) or any(C).r, where C is a type. We write ρ(x) to
denote {r | x.r ∈ ρ}.

For a resource, sens(C)(r) gives the set of sensitive labels that would be lost if it
was mutated. We also write

sens(Γ, ρ) def= {x.l | x.res(l) ∈ ρ ∨ (Γ � x : C ∧ C ≺ C � ∧ any(C �).res(l) ∈ ρ}

sens(Γ, ρ, x.l) def= sens(Γ, ρ) ∩ {x.l}.

The inverse function rem(Γ, ρ, l) gives the set of remaining labels after all the
resources have been mutated: rem(Γ, ρ, x.l) def= {xi.li | xi.li /∈ sens(Γ, ρ, x.l)}.

Labels that may be erased are called properties, and those that are not associated
with any resource are called tags. A resource declaration in class C of the form

1 resource r { properties @a, @b, @c; }

induces the following res and sens mappings: res(C)(@a) = {r}, res(C)(@b) =
{r}, res(C)(@c) = {r}, sens(C)(r) = {@a,@b, @c}.

In Poplar0, for simplicity, we assume that resource and label names are globally
unique.

Label signatures and chaining

LS is a label signature, written as (LS def= (LS+, LS=, LS−)). We will write LS(x) to
denote
(LS+(x), LS=(x), LS−(x)). We will write LS[x �→ y] to denote the operation of
renaming x to y, i.e. LS[x �→ y] def= (LS \ {x}) ∪ {y : LS(x)}.

Label signatures and mutation summaries describe fragments, which are sequences
of statements. In a label signature, LS+ describes labels added by a fragment, LS=

describes labels that are invariant for the fragment (both pre- and postconditions, and
not lost temporarily), and LS− describes preconditions that will be lost due to the frag-
ment. We write precond(LS) to indicate LS= ∪ LS− and postcond(LS) to indicate
LS= ∪ LS+.
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Statement type

Label signature

Acceptable mutation

Uniqueness

Statement type for
var. write sequences

55

Monday, 16 January 2012



Formalisation summary

• Based on MJ

• Extended type system describes and 
constrains the Poplar concepts

• A well-typed Poplar fragment is, when 
compiled, a well-typed MJ fragment

• Soundness proof not yet done
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Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
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Jardine

• A Poplar compiler, Jardine, has been implemented 
by extending JKit, a Java compiler[1]

• Alexandre Pichot contributed to the grammar, parser and uniqueness 
system (mainly), the rest implemented by me

• Poplar checking and generation of integration links 
are implemented, except:

• Some remaining work in uniqueness handling

• Valid overriding is not checked
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1. Pearce, David J. JKit. http://homepages.ecs.vuw.ac.nz/~djp/jkit. 2011.
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Both of the essential stages
have been implemented.
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Front end

Back end
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Type Resolution

Scope resolution

Type Checking

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Uniqueness checking

Label resolution

Poplar type checking

Query solving

New stage

Stage with nontrivial 
modifications

Unchanged stage

Front end

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

Compilation pipeline
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Poplar checking stage

• Implements the formalised Poplar type 
system

• Reconstructs the type of every term and 
statement, verifying that there is some way 
to satisfy all label requirements
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Query solving stage

• Uses Partial Order Planning (POP)[1,2] 
to find solutions to queries - but in theory, 
any planning algorithm may be used

• Replaces queries by their solutions

• We search the space of well typed 
Poplar fragments
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1. McAllester, D. and Rosenblitt, D. Systematic Nonlinear Planning. Nat. Conf. on AI, 1991
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1.1 Size 3

1.1.1.1.1 Size 6

1.1.1.1.2.1 Size 61.1.1.1.2 Size 6

1.1.1.1 Size 5

1.1.1 Size 41 Size 2

1.1.1.1.2.1.1 Size 6

1.1.1.2 Size 5

1.1.12.1 Size 6
1.1.1.2.1.1 Size 7

Search space

• Always prefer small solutions over 
large ones

• A progress measure guarantees 
that we do not get stuck in an 
infinite loop

• There is only ever a finite 
amount of progress that can 
possibly be constructed
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Progress measure

• Expressed in terms of open 
preconditions

• We make progress if we create a new 
precondition set that is not a superset of a 
previously achieved set

• Open preconditions are expressed in terms 
of labels and types, but should 
eventually also track uniqueness
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Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
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Case study

• We will study JFreeChart[1], a popular Java 
chart library

• Goal: demonstrate that we can use Poplar 
with an existing codebase

• We will gain the freedom to refactor 
JFreeChart dramatically without disturbing 
API clients

66

1. Gilbert, D. et. al. JFreeChart. http://www.jfree.org/jfreechart. 2011.

Monday, 16 January 2012

http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart


Using JFreeChart
CHAPTER 5. EVALUATION AND DISCUSSION

1 class ChartClient {

2 /* makeChartFrame(), makeChart(points) have been omitted */
3
4 private static JComponent makeChart(Collection<Integer> points) {

5 XYSeriesCollection dataSet = new XYSeriesCollection();

6 XYSeries s1 = new XYSeries("Gamma");

7
8 int x = 0;

9 for (Integer i : points)

10 {

11 x++;

12 s1.add(x, i);

13 }

14
15 dataSet.addSeries(s1);

16
17 JFreeChart chart = ChartFactory.createXYBarChart("Frequency",

18 "Alpha", false, "Beta", dataSet,

19 PlotOrientation.VERTICAL, true, true, false);
20
21 return new ChartPanel(chart);

22 }

23
24 public static void main(String[] args)

25 {

26 Collection<Integer> points = getData(args);

27 JFrame frame = makeChartFrame();

28 JComponent chart = makeChart(points);

29 JPanel c = new JPanel();

30 c.add(chart);

31 frame.setContentPane(c);

32 frame.setVisible(true);
33 }

34 }

Figure 5.1: Basic usage of JFreeChart

5.1.1 Using JFreeChart
Throughout our study we will use a simple program that makes use of JFreeChart
to display data in a chart. This chart is then displayed in a standard Swing JFrame.
Figure 5.1 shows an example of basic usage of the JFreeChart API.

The code in Figure 5.1 produces the chart window shown in Figure 5.2. The code
that generates the data and the JFrame has been omitted, since they are unrelated to our
point of interest here. The following steps in the JFreeChart API are of special interest.

• Two classes are involved in managing the data for a basic bar chart: a XYSeries
and an XYSeriesCollection.

• A factory method of ChartFactory is used to create the chart itself. This factory
contains a wide variety of methods to assist common use cases.

100
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CHAPTER 5. EVALUATION AND DISCUSSION

1 class ChartClient {

2 /* makeChartFrame(), makeChart(points) have been omitted */
3
4 private static JComponent makeChart(Collection<Integer> points) {

5 XYSeriesCollection dataSet = new XYSeriesCollection();

6 XYSeries s1 = new XYSeries("Gamma");

7
8 int x = 0;

9 for (Integer i : points)

10 {

11 x++;

12 s1.add(x, i);

13 }

14
15 dataSet.addSeries(s1);

16
17 JFreeChart chart = ChartFactory.createXYBarChart("Frequency",

18 "Alpha", false, "Beta", dataSet,

19 PlotOrientation.VERTICAL, true, true, false);
20
21 return new ChartPanel(chart);

22 }

23
24 public static void main(String[] args)

25 {

26 Collection<Integer> points = getData(args);

27 JFrame frame = makeChartFrame();

28 JComponent chart = makeChart(points);

29 JPanel c = new JPanel();

30 c.add(chart);

31 frame.setContentPane(c);

32 frame.setVisible(true);
33 }

34 }

Figure 5.1: Basic usage of JFreeChart

5.1.1 Using JFreeChart
Throughout our study we will use a simple program that makes use of JFreeChart
to display data in a chart. This chart is then displayed in a standard Swing JFrame.
Figure 5.1 shows an example of basic usage of the JFreeChart API.

The code in Figure 5.1 produces the chart window shown in Figure 5.2. The code
that generates the data and the JFrame has been omitted, since they are unrelated to our
point of interest here. The following steps in the JFreeChart API are of special interest.

• Two classes are involved in managing the data for a basic bar chart: a XYSeries
and an XYSeriesCollection.

• A factory method of ChartFactory is used to create the chart itself. This factory
contains a wide variety of methods to assist common use cases.
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Using JFreeChart
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5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {

2 // etc.
3 private static JComponent makeChart(Collection<Integer> points) {

4 XYSeries s1 = new XYSeries("Gamma");

5 //etc.
6 dataSet.addSeries(s1);

7 /* Invoke a helper method that uses a query */
8 JFreeChart chart = useFactoryIndirect(dataSet);

9 return new ChartPanel(chart);

10 }

11 private static JFreeChart useFactoryIndirect(XYSeriesCollection

dataSet)

12 dataSet: tGenChartData. {

13 String title:(tChartTitle) = "Frequency";

14 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;

15 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";

16 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";

17 boolean da:(tWithDateAxis) = false;
18 boolean gu:(tGenUrls) = false;
19 boolean tt:(tGenTooltips) = true;
20 boolean lr:(tReqLegend) = true;
21
22 /* Produce the chart using a query */
23 JFreeChart c = #produce(JFreeChart, tXYBarChart);

24 return c;

25 }

26
27 //etc.
28 }

29
30 class ChartFactory {

31 //etc.
32 public static JFreeChart createXYBarChart(String title,

33 String xAxisLabel, boolean dateAxis,

34 String yAxisLabel, IntervalXYDataset dataset,

35 PlotOrientation orientation, boolean legend,

36 boolean tooltips, boolean urls)

37 title: tChartTitle; dateAxis: tWithDateAxis;

38 xAxisLabel: tXAxisLabel; yAxisLabel: tYAxisLabel;

39 orientation: tPlotOrientation; legend: tReqLegend;

40 tooltips: tGenTooltips; dataset: tGenChartData;

41 urls: tGenUrls;

42 result: ++tXYBarChart.

43 { ... }

44 //etc.
45 }

Figure 5.3: Changes to ChartFactory and JFreeChartTest.
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45 }
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CHAPTER 5. EVALUATION AND DISCUSSION

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4 5 6 7 8

createXYBarChart[4]

res 0 1 2 3 4 5 6 7 8

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(da,boolean,tWithDateAxis)

(gu,boolean,tGenUrls)

(tt,boolean,tGenTooltips)

(po,PlotOrientation,tPlotOrientation)

(a,String,tYAxisLabel)

(dataSet,IntervalXYDataset,tGenChartData)

(lr,boolean,tReqLegend)

(gen_0,JFreeChart,tXYBarChart)

1 JFreeChart gen_0 = ChartFactory.createXYBarChart(title, f, da, a,
dataSet, po, lr, tt, gu);

Figure 5.4: The solution to the Poplar query in Figure 5.3. Boxes labelled 0 to 8 correspond to
method parameters. res corresponds to the return value.
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5.1. CASE STUDY: REFACTORING JFREECHART
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A parameter object

CHAPTER 5. EVALUATION AND DISCUSSION

1 public class ChartParameters {

2
3 tag(ChartParameters) populated;

4
5 String chartTitle;

6 boolean withDateAxis, urls, tooltips, legend;

7
8 public ChartParameters(String chartTitle, boolean withDateAxis,

9 boolean urls, boolean tooltips, boolean legend)

10 result: ++populated; chartTitle: tChartTitle;

11 withDateAxis: tWithDateAxis; urls: tGenUrls;

12 tooltips: tGenTooltips; legend: tReqLegend. {

13 this.chartTitle = chartTitle; this.withDateAxis = withDateAxis;

14 this.urls = urls; this.tooltips = tooltips;

15 this.legend = legend;

16
17 }

18 }

19
20 public class ChartFactory {

21 //etc.
22
23 public static JFreeChart createXYBarChart(ChartParameters cp,

24 String xAxisLabel, String yAxisLabel,

25 IntervalXYDataset dataset, PlotOrientation orientation)

26
27 cp: populated;

28 xAxisLabel: tXAxisLabel;

29 yAxisLabel: tYAxisLabel;

30 dataset: tGenChartData;

31 result: ++tXYBarChart. { ... }

32
33 //etc.
34 }

Figure 5.6: The ChartParameters class and the modified ChartFactory API.
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• Change library API

• Instead of passing several 
parameters individually, pass 
them in a containing object

• This refactoring is 
recommended by Fowler1 for 
certain situations

71
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5.1. CASE STUDY: REFACTORING JFREECHART

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4

createXYBarChart[4]

res 0 1 2 3 4

0 1 2 3 4

ChartParameters[5]

res 0 1 2 3 4

(da,boolean,tWithDateAxis)

(title,String,tChartTitle)

(gu,boolean,tGenUrls)

(lr,boolean,tReqLegend)

(a,String,tYAxisLabel)

(po,PlotOrientation,AnyLabel())

(tt,boolean,tGenTooltips)

(f,String,tXAxisLabel)

(dataSet,IntervalXYDataset,tGenChartData)

(gen_0,JFreeChart,tXYBarChart)

(gen_1,ChartParameters,populated)

1 ChartParameters gen_1 = new ChartParameters(title, da, gu, tt, lr);
2 JFreeChart gen_0 = ChartFactory.createXYBarChart(gen_1, f, a, dataSet,

po);

Figure 5.7: An updated solution that makes use of the changes from Figure 5.6.
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• The client is updated 
correctly without any manual 
changes

Result
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Converting parameters to state
5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartFactory {

2 //etc.
3 composite @factoryConfigured = (@c1, @c2, @c3);

4
5 public ChartFactory() result: ++ready. { }

6
7 resource urlConfig {

8 properties @c1;

9 private static boolean currentUrls;

10 }

11 resource legendConfig {

12 properties @c2;

13 private static boolean currentLegend;

14 }

15 resource tooltipsConfig {

16 properties @c3;

17 private static boolean currentTooltips;

18 }

19
20 public void setGenUrls(boolean urls)

21 urls: tGenUrls;

22 this: ready, ++@c1. {

23 currentUrls = urls;

24 }

25 public void setGenTooltips(boolean tooltips)

26 tooltips: tGenTooltips;

27 this: ready, ++@c2. {

28 currentTooltips = tooltips;

29 }

30 public void setReqLegend(boolean legend)

31 legend: tReqLegend;

32 this: ready, ++@c3. {

33 currentLegend = legend;

34 }

35 public void resetConfiguration() mutates urlConfig, legendConfig,

tooltipsConfig: {

36 currentLegend = false;
37 currentTooltips = false;
38 currentUrls = false;
39 }

40
41 public JFreeChart createXYBarChart(ChartParameters cp,

42 String xAxisLabel, String yAxisLabel, IntervalXYDataset dataset,

43 PlotOrientation orientation)

44 cp: populated; xAxisLabel: tXAxisLabel;

45 yAxisLabel: tYAxisLabel; dataset: tGenChartData;

46 orientation: tPlotOrientation; this: @factoryConfigured;

47 result: ++tXYBarChart.

48 { ... }

49
50 //etc.
51 }

Figure 5.8: Introducing three new fields, resources and properties to manage permanent state
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5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartFactory {

2 //etc.
3 composite @factoryConfigured = (@c1, @c2, @c3);

4
5 public ChartFactory() result: ++ready. { }

6
7 resource urlConfig {

8 properties @c1;

9 private static boolean currentUrls;

10 }

11 resource legendConfig {

12 properties @c2;

13 private static boolean currentLegend;

14 }

15 resource tooltipsConfig {

16 properties @c3;

17 private static boolean currentTooltips;

18 }

19
20 public void setGenUrls(boolean urls)

21 urls: tGenUrls;

22 this: ready, ++@c1. {

23 currentUrls = urls;

24 }

25 public void setGenTooltips(boolean tooltips)

26 tooltips: tGenTooltips;

27 this: ready, ++@c2. {

28 currentTooltips = tooltips;

29 }

30 public void setReqLegend(boolean legend)

31 legend: tReqLegend;

32 this: ready, ++@c3. {

33 currentLegend = legend;

34 }

35 public void resetConfiguration() mutates urlConfig, legendConfig,

tooltipsConfig: {

36 currentLegend = false;
37 currentTooltips = false;
38 currentUrls = false;
39 }

40
41 public JFreeChart createXYBarChart(ChartParameters cp,

42 String xAxisLabel, String yAxisLabel, IntervalXYDataset dataset,

43 PlotOrientation orientation)

44 cp: populated; xAxisLabel: tXAxisLabel;

45 yAxisLabel: tYAxisLabel; dataset: tGenChartData;

46 orientation: tPlotOrientation; this: @factoryConfigured;

47 result: ++tXYBarChart.

48 { ... }

49
50 //etc.
51 }

Figure 5.8: Introducing three new fields, resources and properties to manage permanent state
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• Instead of passing parameters, we assign default values (template 
data) to the factory class

• We require these to be initialised before the factory may be used.
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CHAPTER 5. EVALUATION AND DISCUSSION

recv 0

setGenTooltips[9]

res recv 0

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

0 1

ChartParameters[8]

res 0 1

recv 0

setReqLegend[5]

res recv 0

start(dummy)[2]

ChartFactory[6]

res

recv 0

setGenUrls[7]

res recv 0

finish(dummy)[3]

(gen_1,ChartFactory,@c2)

(gen_0,JFreeChart,tXYBarChart)

(gen_2,ChartParameters,populated)

(gen_1,ChartFactory,@c3)

(po,PlotOrientation,tPlotOrientation)

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(title,String,tChartTitle)

(f,String,tXAxisLabel)

(tt,boolean,tGenTooltips)

(lr,boolean,tReqLegend)

(da,boolean,tWithDateAxis)

(gu,boolean,tGenUrls)

(gen_1,ChartFactory,ready)

(gen_1,ChartFactory,ready) (gen_1,ChartFactory,ready)

(gen_1,ChartFactory,@c1)

1 ChartParameters gen_2 = new ChartParameters(title, da);
2 ChartFactory gen_1 = new ChartFactory();
3 gen_1.setReqLegend(lr);
4 gen_1.setGenUrls(gu);
5 gen_1.setGenTooltips(tt);
6 JFreeChart gen_0 = gen_1.createXYBarChart(gen_2, f, a, dataSet, po);

Figure 5.9: The second updated solution with the changes from Figure 5.8. The three boolean
parameters are now stored in properties and corresponding resources. Blue boxes are static
methods or constructors, red boxes are instance methods. recv is short for receiver (i.e. this).
Note that this partially ordered solution can be linearised in many different ways, which are all
valid.
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Result

• The client is updated 
correctly without any 
manual changes

CHAPTER 5. EVALUATION AND DISCUSSION

recv 0

setGenTooltips[9]

res recv 0

recv 0 1 2 3 4
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Figure 5.9: The second updated solution with the changes from Figure 5.8. The three boolean
parameters are now stored in properties and corresponding resources. Blue boxes are static
methods or constructors, red boxes are instance methods. recv is short for receiver (i.e. this).
Note that this partially ordered solution can be linearised in many different ways, which are all
valid.
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Configuring the factory manually5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {
2 //...
3 private static void configureFactory(ChartFactory cf)
4 cf: +@factoryConfigured. {
5 cf.setGenTooltips(true);
6 cf.setGenUrls(false);
7 cf.setReqLegend(true);
8 cf.resetConfiguration(); //This line violates the method’s

contract
9 }

10 //...
11 }

Figure 5.10: Configuring the factory explicitly. This method is invalid with respect to its speci-
fication, since it erases the @factoryConfigured property on the final line.

0 1

ChartParameters[5]

res 0 1

0

configureFactory[7]

res 0

start(dummy)[2]

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

ChartFactory[15]

res

finish(dummy)[3]

(gen_3,ChartParameters,populated)(gen_4,ChartFactory,(@c1, @c2, @c3))

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(da,boolean,tWithDateAxis)

(po,PlotOrientation,tPlotOrientation)

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(gen_2,JFreeChart,tXYBarChart)

(gen_4,ChartFactory,AnyLabel())

1 ChartFactory gen_4 = new ChartFactory();
2 ChartClient.configureFactory(gen_4);
3 ChartParameters gen_3 = new ChartParameters();
4 JFreeChart gen_2 = gen_4.createXYBarChart(gen_3, f, a, po, gen_3);

Figure 5.11: When we have removed the seeded violation in Figure 5.10, we find this solution.
The method configureFactory is now used in place of the individual setter methods. Note that
this partially ordered solution can be linearised in many different ways, which are all valid.
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• Instead of relying on Poplar to find configuration parameters, we supply 
them manually in the client

• This method takes precedence because it results in a shorter solution

• We introduce an error on line 8 (for demo purposes) that will be 
detected by Poplar
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5.1. CASE STUDY: REFACTORING JFREECHART

1 class ChartClient {
2 //...
3 private static void configureFactory(ChartFactory cf)
4 cf: +@factoryConfigured. {
5 cf.setGenTooltips(true);
6 cf.setGenUrls(false);
7 cf.setReqLegend(true);
8 cf.resetConfiguration(); //This line violates the method’s

contract
9 }

10 //...
11 }

Figure 5.10: Configuring the factory explicitly. This method is invalid with respect to its speci-
fication, since it erases the @factoryConfigured property on the final line.

0 1

ChartParameters[5]

res 0 1

0

configureFactory[7]

res 0

start(dummy)[2]

recv 0 1 2 3 4

createXYBarChart[4]

res recv 0 1 2 3 4

ChartFactory[15]

res

finish(dummy)[3]

(gen_3,ChartParameters,populated)(gen_4,ChartFactory,(@c1, @c2, @c3))

(dataSet,IntervalXYDataset,tGenChartData)

(a,String,tYAxisLabel)

(da,boolean,tWithDateAxis)

(po,PlotOrientation,tPlotOrientation)

(f,String,tXAxisLabel)

(title,String,tChartTitle)

(gen_2,JFreeChart,tXYBarChart)

(gen_4,ChartFactory,AnyLabel())

1 ChartFactory gen_4 = new ChartFactory();
2 ChartClient.configureFactory(gen_4);
3 ChartParameters gen_3 = new ChartParameters();
4 JFreeChart gen_2 = gen_4.createXYBarChart(gen_3, f, a, po, gen_3);

Figure 5.11: When we have removed the seeded violation in Figure 5.10, we find this solution.
The method configureFactory is now used in place of the individual setter methods. Note that
this partially ordered solution can be linearised in many different ways, which are all valid.

111

• Once we have removed the 
error, the client is updated 
correctly without any manual 
changes

• Note that this shorter 
solution is preferred over the 
previous (longer) solution, 
which is still valid

Result
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Case study results

• We have demonstrated that Poplar can be 
used with existing Java libraries to permit a 
wide range of refactorings without 
disturbing clients, once the initial cost of 
introducing queries has been paid.
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Brute force Poplar conversion

• By generating enough unique label names, we can 
always convert an ordinary Java method 
call or field access into a query with a 
predictable result

• However, protecting the established state and 
designing resources well may not always be 
possible with a “naive conversion”
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Discussion

• Achievements

• Limitations
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Remark

• Three roles of a label: external 
semantic contract, temporal contract, 
internal semantic contract

• For each individual label, the external 
semantic contract must be preserved 
or strengthened across versions of 
components
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This is very attractive, because now we have gone from several high level and large scale 
constraints (on the level of methods, fields) to a more fine grained constraint (on the level of 
semantic units)



Achievements

• The goal has been to allow Java 
components to evolve while remaining 
integrated

• Sensitivities

• Syntactic/structural changes

• Semantic changes

• Temporal constraint changes
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Achievements: evolvability

• Structural and temporal changes 
become almost irrelevant.

• As long as we can construct a path from 
the starting state to the requested goal 
state, we can compensate for these 
changes (see JFreeChart study)

• Semantic changes to methods and 
fields become irrelevant, if labels 
are preserved correctly
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“Almost irrelevant” - in the sense that some changes may lead to other solutions being found 
first, which may not be irrelevant



Evolution consequences

83

Service/client side Disturbance to 
mutation summaries

Manual client 
changes necessary

Solutions 
may change

Compilation may be 
impossible

Add property ✔

Remove property ✔ ✔

Strengthen label contract 
(ext. semantic)

Weaken label contract (ext. 
semantic) ✔

Move property to 
different resource

If explicit method 
calls exist

If explicit method 
calls exist ✔ ✔

Change temporal 
contracts ✔ ✔

Change internal 
property contracts

Add mutation to 
mut. summary

If called explicitly If called explicitly ✔ ✔

Remove mutation 
from mut. summary ✔
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Achivements: design and implementation

• Object-oriented principles: 
encapsulation and polymorphism of 
properties, resources

• Ability to describe and work with 
real software systems

• Rigorous specification

• Usable implementation

84

Monday, 16 January 2012



Limitations

• Imprecision

• Uniqueness system is too restrictive and 
imprecise

• Sometimes the return type from a method 
is expected to be downcast to a different 
type (see Prospector[1])
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1. Mandelin, D., Xu, L., Kimelman, D., and Bodik, R. Jungloid Mining: Helping to Navigate the API Jungle. 
PLDI 2005.
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Limitations (2) 

• Impossible to request negative effects or prevent 
labels from being established

• We may simulate negative state by creating a 
special property that erases state when 
“established”

• Method effects and preconditions must be 
expressed as conjunctions of atomic facts

• Disjunctions of conjunctions would be very 
simple to implement
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Limitations (3)

• Effort in writing annotations (however, 
protocol mining is a well studied problem)

• Data flow between Java and Poplar

• With a more accurate aliasing system, the 
user might be able to annotate all code 
(no pure Java)

• With interop, warnings/guarantees/errors 
should be easy to implement
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Also: a possibility is a static dataflow analysis tool to produce information in auxiliary files, 
which warn the user about some possible violations



More related work (selected)
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Poplar publications

• Rejected

• ECOOP 2011, POPL 2011, ESOP 2012, ...

• Many reviewers liked the general approach, but it was probably too 
early

• Accepted

• Nyström-Persson, J and Honiden, Shinichi. 
Poplar: Java Composition with Labels and AI 
Planning. Proc. of the Workshop on Free 
Composition (FREECO) at Onward! 2011.

• Planned

• New paper about design, formalism (possibly CBSE, SPLASH, TSE)
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Outline

• Introduction

• Design

• Demo

• Formalisation

• Implementation

• Case study and evaluation

• Conclusion
90
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Conclusion

• By combining constraints from various 
well-studied domains, we can express Java 
code in such a way that AI planning 
generates meaningful results

• Hypothesis confirmed

• AI planning, labels, and a typestate-like 
formalism may be combined to yield an 
automatic integration system that is 
robust to evolution
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Some future work

• Accuracy improvements: better aliasing system?

• Finish basic implementation (override checking)

• Implement integration link verification?

• Subresources

• Resource links (needed in practice for many 
examples, e.g. JDBC)

• Quality metrics for solutions?

• Study more libraries, write applications
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Extra slides
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Novelty

• No existing label-based argument selection 
in Java (to the best of my knowledge)

• No existing combination of typestate and 
AI planning

• Query-based integration has similarities 
with aspect-oriented programming, but is 
fundamentally novel
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Design
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Implicit mutations

public class Socket {

    resource speed {
      properties @fast, @slow;
      int dataSpeed; 
  
      void setFast() mutates this.speed: 
        this: ++@fast. {
        dataSpeed = 100;
      }
      void setSlow() mutates this.speed: 
        this: ++@slow. {
        dataSpeed = 10;
      }
    }       
}

• Convenience feature: 
No need to declare 
“mutates this.x” if the 
method is declared 
inside the resource - 
this is implicit
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Constrained fields

98

• Field labels depend on 
owning object’s labels

• Implicitly always unique

class MessageSender {

 resource state {
  properties @ready, @notReady;

  Socket s:((@ready)->(@open),(@notReady)->(@closed));

  void open() this: ++@ready. {
    s = new Socket();
    s.open(); //the final state of s is validated
  }
}

class Socket {
 resource state {
  properties @open, @closed;

  void open() this: ++@open. { ... }
 }
}
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The drop statement

99

• Explicitly delete labels 
of ‘this’

• Identify a precise point 
where a label is lost

• Relaxes expectations on 
constrained fields

• Possibly unnecessary??

class MessageSender {

 resource state {
  properties @ready, @notReady;

  Socket s:((@ready)->(@open),(@notReady)->(@closed));

  void close() this: -@ready. { 
    s.close();
    drop @ready;  
    s = new Socket();
  }
}

class Socket {
 resource state {
  properties @open, @closed;

  void Socket() result: ++@closed. {...}
 }
}
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Formalisation
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The chaining operation

101

3.2. POPLAR0 : A MINIMAL POPLAR

Chaining, or sequential composition, is one of the central operations on label signa-
tures. The (LS1, ρ1)⊕(LS2, ρ2) operation chains label signatures, for the case where a
fragment described by (LS1, ρ1) is evaluted immediately before a fragment described
by (LS2, ρ2). Note that chaining of label signatures is defined with respect to cor-
responding mutation summaries and also produces a tuple of a label signature and a
mutation summary. First we will define a binary predicate (LS1, ρ1) ⊕ (LS2, ρ2) ok
which indicates whether it is valid to chain the two signatures or not.

Γ � (LS1, ρ1)⊕(LS2, ρ2) ok ⇐⇒ ∀l ∈ (LS=
2 ∪LS−2 ).l ∈ (LS=

1 ∪LS+
1 )∨l /∈ (sens(Γ, ρ1)∪LS−1 )

This predicate ensures that for each fragment, its preconditions are either immedi-
ately satisfied by the preceding fragment that we wish to adjoin, or its preconditions are
not erased by the preceding fragment (and may then be satisfied by some other, even
earlier fragment).

Given that (LS1, ρ1)⊕ (LS2, ρ2) ok, we define (LS1, ρ1)⊕ (LS2, ρ2) as

Γ � (LS1, ρ1)⊕ (LS2, ρ2)
def= ((LS+, LS=, LS−), ρ) where

LS+
def
=(rem(Γ, ρ2, LS+

1 ) ∪ LS+
2 )) \(LS−2 ∪ LS=

1 ∪ LS−1 )

etm
def
=sens(Γ, ρ1, LS=

2 \ LS=
1 ) ∪ sens(Γ, ρ2, LS=

1 \ LS=
2 )

LS=
def
=(LS=

1 ∪ LS=
2 ) \ etm \(LS+

1 ∪ LS−2 )

LS−
def
=(LS

−
2 ∪ LS

−
1 ∪ etm) \LS+

1

ρ
def
=ρ1 ∪ ρ2

The intuition behind this operation is as follows. For LS+ we want to capture added
labels that remain ”added”, for LS= invariant labels that remain invariant, and for LS−
any subtracted preconditions. For LS+, what are the new labels that will be added if the
second fragment is executed before the first? The labels added by the first fragment will
only remain ”added” if they are not lost to the mutations in the second fragment. The
rem function computes this set. The labels added by the second fragment will clearly
remain added since we are not executing anything after this addition, that we know
of. So we take the union of these two sets, but we must also remove the subtractions
of the second fragment and the invariants of the first, since it’s possible for the same
label to be in, for instance, the invariants of the first fragment and the additions of the
second. In this case it has clearly not been added, being required to exist before the
first fragment executes. Hence the subtraction of sets at the end of the LS+ expression.
LS= and LS− follow a similar pattern. The sens function in the expression for LS−
computes those labels that would have been invariants from the first fragment, but that
are lost to mutations in the second fragment. Thus they migrate from invariants to
subtractions when the chaining is performed.

We say that a label signature LS is well-formed if LS+, LS− and LS= are disjoint
sets. A pair LS, ρ is well-formed if, for any e.l ∈ LS−, e.res(l) ∈ ρ. In this case, we
write ∆ � (LS, ρ) ok.
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Note: this has been slightly altered from the version in the thesis.
Discuss alternative notions of well-formedness



Disjunctive composition

CHAPTER 3. FORMALISING POPLAR

Proof. We prove this by case analysis of the origin of any non-empty intersection of
the three sets.

First, assume that LS= ∩ LS+ �= ∅. Then, from definitions, either LS=
1 ∩ LS+

2 �= ∅
or LS+

1 ∩ LS=
2 �= ∅. But LS=

1 is excluded from LS+, and LS+
1 is excluded from LS=,

so none of these sets can be in LS= ∩ LS+. Hence, LS+ ∩ LS= = ∅.
Second, assume that LS=∩LS− �= ∅. Note that rem(Γ, ρ1∪ρ2, LS=

1 )∩sens(Γ, ρ2, LS=
1 ) =

∅. So LS= ∩ LS− can have no members originating in LS=
1 . LS−2 is excluded from

LS=, so LS−2 ∩ LS=
1 can contribute no members to LS= ∩ LS−. The only remain-

ing case is members from LS=
2 ∩ LS−1 . But if Γ � (LS1, ρ1) ⊕ (LS2, ρ2) ok, then

LS=
2 ∩ LS−1 = ∅. Thus, LS= ∩ LS− = ∅.
Third, assume that LS− ∩ LS+ �= ∅. LS+

1 is excluded from LS−, so this is only
possible if LS+

2 has a non-empty intersection with LS−1 or with sens(ρ2, LS=
1 ). But

LS=
1 and LS−1 are excluded from LS+, so any such elements are not part of LS+∩LS−.

Therefore, LS+ ∩ LS− = ∅.

Note also that trivially, ∆ � (LS1, ρ1) ok ∧ ∆ � (LS2, ρ2) ok =⇒ ∆ �
(LS1, ρ1)⊕ (LS2, ρ2) ok.

Remark. Our definition of well-formedness insists that each label is either an
addition, an invariant, or a subtraction, and never, for a given variable, a member of
more than one of the three sets in a label signature. This is not the only conceivable
notion of well-formedness. Consider the following class.

1 class C {
2 resource r {
3 properties @a;
4 }
5 void m() this: @a. { ... }
6 void n() mutates this.r: { ... }
7 void o() this: +@a. { ... }
8 void sequence() mutates this.r: this: -@a. {
9 m(); n(); o();

10 }
11 }

The sequence m(); n(); o(); needs @a as an initial precondition for m. The property
is lost by n but re-established by o. Our formalisation considers the overall effect of
the method sequence to be a subtraction of @a even though it is re-established in
the end.. An alternative way of reasoning about it would be to permit a non-empty
intersection between the addition and subtraction sets of label signatures. Then one
could express that a label is lost and re-established. We leave an investigation of this
alternative design for future work.

In addition to chaining of label signatures, we will need disjunctive composition
for the case where either one of two fragments might execute. We use this to type if ...
else -statements.

(LS1, ρ1)⊗ (LS2, ρ2)
def
= ((LS+

1 ∩ LS+
2 ,

LS=
1 ∩ LS=

2 ,

(LS−1 ∪ LS−2 ∪ (LS=
2 \ LS=

1 ) ∪ (LS=
1 \ LS=

2 )) \ (LS+
1 ∪ LS+

2 )

We can easily see that (LS1, ρ1)⊗(LS2, ρ2) remains well formed under alternation.
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Property/resource polymorphism

103

class Base {
 resource r {
  properties @p;
  int i;
  void makeP() this: ++@p. {
    i = 0;
  } }
}

class E1 extends Base {
 resource r {
   int j;
   void makeP() this: ++@p. {
     i = 0;
     j = 0; //stronger def.
   } }
}

class E2 extends Base {
 resource r {
  String x;
  void makeP() this: ++@p. {
   x = “”; //different def.
  } }
}

• Overriding resources can add 
more state, more properties

• Overriding properties can 
redefine

• Internal predicate

• Temporal constraints (within 
limits)

• Properties cannot be moved to a 
different resource
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Prior/posterior expanded signatures

• Full specification of the 
state of a method 
before and after 
execution

• Domain: fields in this, 
arguments, receiver 
(same as LS)

• Note: in general, 
mutations are only 
permitted on these 
expressions 

104

class MessageSender {

 resource state {
  properties @ready, @notReady;

  Socket s:((@ready)->(@open),
(@notReady)->(@closed));

  void open() this: ++@ready. {
    s = new Socket();
    s.open(); //the final state of s 
is validated
  }
}

open() prior: (this: {}, this.s: {})
open() posterior: (this: {@ready}, 
this.s:{@open})
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3 resource access levels
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class Demo {

 resource r {
  properties @a, @b;
  int x;

  //m in raw mode because of ++@a
  void m() this: ++@a, @b -@c. {
    x = 0; //@a and @b not checked
  }

  //m2 not in raw mode
  void m2() this: +@a, @b, -@c. {
   m(); //@a, @b, @c are checked
  }
 } //end of resource r

  //m3 has no access to r
  void m3() this: +@a, @b, -@c. {
    m(); //invalid because of -@c
  }

}

• None (weakest)

• Mutates

• Can destroy properties

• Raw (with ++@p) 
(strongest)

• Can write data directly in 
resource

• ++ and = (invariants) are 
unchecked
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Benefits of the resource/property model

• The structure of resources, in terms of properties 
and their relations, can often change without 
disturbing method contracts

• Natural fit for AI planning algorithms

• A “state” is a set of labels

• Client queries can match on a subset
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Implementation
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Design decision: where to insert new stages?

Front end

Back end

Skeleton discovery

Skeleton builder

Type propagation

Java file reader

Type Resolution

Scope resolution

Type Checking

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Uniqueness checking

Label resolution

Poplar type checking

Query solving

New stage

Stage with nontrivial 
modifications

Unchanged stage

Front end

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

• Early stage: Java classes remain very 
close to source code form, weak 
invariants provided and expected

• Late stage: compilation almost 
finished, strong invariants provided 
and expected 

• Our new stages are inserted at a 
middle point, after Java type checking 
has been done
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JKit

• Java compiler for research purposes, by David J 
Pearce

• Chosen as a foundation because it:

• Compiles Java 5 (almost) fully

• Is relatively recent

• Has a straightforward design

• Written in Java
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Integration link verification (future)

• Store information about Poplar signatures in Java 
class files as class file attributes (standard feature)

• In client classes, store assumptions about 
service side method contracts

• In service classes, store the provided contracts

• To verify a link, simply check these assumptions 
against each other (using the “valid overriding” 
relation)

A straightforward implementation strategy:
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Conclusion
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Resource links and external resources 
(future?)
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class ItemList {
    resource list {
       properties @empty, @full;
       link ext[Item].hosted;   
       List<Item> data;
    }
    resource[Item] hosted {
       properties @inList;
    }
    
    void add(Item i) mutates list: 
       i: ++@inList. {
      data.add(i);
    }
    void empty() mutates list,
     any(Item).ext[ItemList].hosted: 
     this: ++@empty. {
     data.removeAll();
    }
}

• External resource: one 
class provides properties for 
another class 

• Link: mutation of x would 
implicitly also be a mutation 
of ext[D].hosted

• Limitation: we cannot 
automatically identify the 
external object that is 
operated on
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Connection

Statement

ResultSet

warningsstate transaction
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connection
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Link External resource
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Legend
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Link External resource

Class @property resource

Legend

Modelling JDBC
with resource links
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Drafts
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public class Socket {
    resource state {
    	 properties @raw, @bound, @open, @closed;
       
    	 String remoteHost;	
    	 boolean isConnected = false;
    	 int connectionSpeed = 0;
    	
    	 Socket() this: ++@raw. { } 
	
    	 void bind(SocketAddress bindPoint) this: -@raw, ++@bound. { }
	
    	 void connect() this: -@bound, ++@open. { }
	
    	 void send(byte[] data) this: @open; data: ++sentData. { }
	
    	 void receive(byte[] data, int offset, int max) this: open; offset: 
receiveOffset; max: receiveMaxlen;
    	 data: ++receivedData. { }
	
    	 void close () this:-@open, ++@closed. { }
    	
    	 void printInformation() this: @open. {
    	 	 println("Connected to " + remoteHost.toString() + " at " + 
connectionSpeed + " kB/s");
    	 }
    }
} 115
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