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ABSTRACT
Class evolution in object-oriented programming often causes
so-called breaking changes, largely because of the rigidity of
component interconnections in the form of explicit method
calls and field accesses. We present a Java extension, Poplar,
which we are currently developing. In Poplar, inter-component
dependencies are expressed using declarative queries; con-
crete linking code, generated using a planning algorithm,
replaces these at compile time. We show how Poplar can en-
able fully automatic integration of Java components through
evolvable and statically checkable integration links, pointing
the way to a new general composition method for object-
oriented languages.

Categories and Subject Descriptors
D3.3 [Programming Languages]: Frameworks

; D3.3 [Programming Languages]: Constraints

General Terms
Languages

Keywords
Components, protocols, code synthesis, object-oriented pro-
gramming, AI planning, adaptation, evolution, composition

1. INTRODUCTION
Two essential and related properties of object-oriented

programming languages like Java are encapsulation and poly-
morphism. Encapsulation is the principle of separating in-
terface from implementation, and this in turn enables poly-
morphism, whereby the runtime type of an object may be
different from its declared type in the source code, and thus
unknown to the caller. When two classes have the same

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

interfaces, according to the principle of behavioural subtyp-
ing[9], the implementations should be substitutable for each
other and all expected safety properties should be retained.
Contemporary programming paradigms such as component-
based software development (CBSD) [15, 14] draw heavily
on these principles, and in principle, all object-oriented pro-
gramming languages strive to simplify code reuse. In what
follows, we refer to components in the most general sense of
the term, as sets of classes.

Theoretically, interfaces of classes should only change in
backward-compatible ways once they have been published,
for instance through the addition of new methods, or through
the widening of assumed preconditions and narrowing of as-
sumed postconditions. Interface changes that require client
classes to update their associated client code are called break-
ing changes. While developers strive not to make such break-
ing changes, it has been found that in practice they are
commonplace [4]. Breaking changes introduce a large cost
into component-based software development, since poten-
tially every dependent class may have to be updated. In
other words, CBSD, as it is practised today, suffers from a
conflict between software evolution and flexibility of compo-
sition.

The following are some examples of language-level break-
ing changes that can occur in modern imperative object-
oriented languages.

Name changes. The renaming of a method, everything
else being the same.

Protocol changes. Often, a sequence of method invoca-
tions is required to establish a certain effect or compute
a certain value. When this sequence changes from one
class version to another, we say that a protocol change
has occurred. This includes permutations of protocol
steps, but also addition of new steps and removal of
old steps.

Type changes. Methods may be moved from one class to
another; argument and return types may be changed
to incompatible types.

Signature changes. The number of arguments that meth-
ods require may change, without visibly affecting the
functionality that existing clients receive.

In addition, there are changes that occur above the level
of the language, such as conceptual semantic changes and
quality attributes [1].“Method calls [and field accesses] are
the assembly language of software interconnection” [12], and



this situation has several problems. We are currently devel-
oping a Java extension, Poplar, which adds several concepts
to the Java language to support a new kind of composition
methodology, in which integration requests are expressed
using declarative queries. At compile time, we generate
fragments of concrete linking code, called solutions to the
queries.

Poplar associates a set of labels with each variable and
describes interfaces in terms of preconditions, postcondi-
tions and invariants of fields, parameters, return values and
method receivers. Labels are a compile-time property which
are used to allow the generation of solutions by a search al-
gorithm. The implementation that we are constructing uses
the Partial Order Planning (POP) algorithm, but in prin-
ciple many different algorithms can be used. Our design
permits both modular integration and modular checking of
integrations. We intend for such integrations to be used
across component boundaries, where developers can antici-
pate that interfaces may change in the future, but it is also
possible to retrofit them into an existing code base.

In what follows, we give an example of the application
of Poplar to the Java time and date API (Section 2), and
describe our use of the Partial Order Planning algorithm
(Section 3). We then give some general remarks on our
approach (Section 4), discuss related work (Section 5) and
conclude (Section 6).

2. INTEGRATING TIME AND DATE CODE
We introduce the Poplar Java integration mechanism us-

ing a simple example from the real world. The time and date
API of the standard Java libraries changed substantially be-
tween version 1.4 and version 1.5 of the language. In version
1.4, the following code was used to obtain the current hour
of the day:

Date now = new Date ( ) ;
i n t hour = now . getHour ( ) ;

In Java 1.5 and later versions, the following code is used:

Ca l enda r now = Ca lenda r . g e tCa l enda r ( ) ;
i n t hour = now . ge t ( Ca l enda r .HOUR OF DAY) ;

Even though the Java 1.5 libraries keep the old version
of the API, this is representative of a breaking change that
may occur in practice, and API publishers generally prefer
not to have to preserve old versions.

In principle, Poplar considers integration sites to have one
of two possible purposes: producing values or producing ef-
fects. Clearly, in this case, a client component that wants to
use the time and date API wants to do the former. Before
we can request the production of a value, we must anno-
tate the API that is provided by the service component. In
the case of Java 1.4, the component supplier should provide
annotations similar to the ones in Figure 1.

2.1 Labels
We have added the labels annotation as a new member of

classes and interfaces. In the case of the interface TimeAndDate,
labels are provided for the int type using the notation labels(int).
Once these labels have been defined, we can logically distin-
guish between integers that have these labels and integers
that do not, as a lightweight refinement of the type system.
Since the Date class implements TimeAndDate, references to
nowHour in this class are understood to refer to the label

i n t e r f a c e TimeAndDate {
l a b e l s ( i n t ) nowHour , nowMinute , nowSecond ;

}

c l a s s Date implements TimeAndDate {
l a b e l s cu r r en tDa t e ;
Date ( )

r e s u l t : +cu r r en tDa t e ;
i n t getHour ( )

t h i s : cu r r en tDate ,
r e s u l t : + nowHour ;

/∗ S im i l a r a nno t a t i o n s f o r getMinute ( ) ,
getSecond ( ) , e t c . ∗/

}

Figure 1: TimeAndDate annotations for Java 1.4.

defined in the TimeAndDate interface, but it is possible for
other interfaces to define labels with the same name, and
their meaning might be different. Disambiguation should
be done in the usual way using fully qualified names where
necessary.

In the Date class we have added pre- and postconditions
to the methods. The constructor Date() declares that the re-
sult, ie the return value, will have the new label currentDate.
This label was declared in the Date class itself. The + sign
indicates that a new label is added. In contrast, the getHour
method indicates that for the this variable, the receiver of
the method, an invariant of the currentDate label is expected
- the label must be owned by the this object prior to method
invocation, and it will remain after the invocation. When
this method is invoked, the return value will be an integer
which has the nowHour label. Here, the labels describe one
kind of useful application of the method, but not mandatory
constraints on it. As for the client component which wants
to produce the value corresponding to the current hour of
the day, its code should resemble the following:

c l a s s TimeUt i l s implements TimeAndDate {
vo id p r i n tHou r ( ) {

i n t hour = #produce ( i n t , nowHour ) ;
System . out . p r i n t l n ( ”The c u r r e n t hour i s : ”

+ hour ) ;
}

}

Again, we use the TimeAndDate interface to refer to the
nowHour label. We request a production of an integer value
with this label using the #produce query. We prefix queries
with a ’#’ sign to distinguish them from normal Java code.
At compile time, the Poplar solver will find a solution to
this query and replace it with a sequence of Java state-
ments. Such statements can be field accesses or method
invocations, including constructor invocations. Code result-
ing from #produce queries will return a single value, and
the queries may thus be “assigned” to a variable, as in the
example we have just shown.

The solver uses a planning algorithm to find a solution to
the query. The plan search will proceed backwards from the
goal to the assumptions. In this case, the goal is the exis-
tence of a variable of type int and with label nowHour. First
the planner needs to find all actions that can produce such a
variable (method invocations and field accesses). If the only
one available is the one we declared above (Date.getHour),
then once this method has been selected, a new set of precon-



C l a s s Ca l enda r implements TimeAndDate {
l a b e l s ( i n t ) hourMarker , minuteMarker ,

secondMarker ;
l a b e l s de fau l tT imeZone ;

f i n a l i n t HOUR OF DAY : ( hourMarker ) = 11 ;

Ca l enda r ( )
r e s u l t : +de fau l tT imeZone { . . . }

i n t get ( i n t s e l e c t o r )
t h i s : de fau l tTimeZone ,
( s e l e c t o r : hourMarker ,
r e s u l t : +nowHour ) ? ,
( s e l e c t o r : minuteMarker ,
r e s u l t : +nowMinute ) ? { . . . }

}

Figure 2: TimeAndDate annotations for Java 1.5.

ditions will result - in order for that method to be invoked,
we need to have a Date object with the currentDate label.
We repeat the search and find that there is a constructor
that takes no arguments and that produces such an object.
This yields a complete solution, and thus, after the code has
been generated and the substitution has taken place, the
client class will look like the following:

c l a s s TimeUt i l s implements TimeAndDate {
vo id p r i n tHou r ( ) {

Date v1 = new Date ( ) ;
i n t hour = v1 . getHour ( ) ;
System . out . p r i n t l n ( ”The c u r r e n t hour i s : ”

+ hour ) ;
}

}

In addition, the solver will remove non-Java elements from
the code, such as the label declarations from the various
classes, so that the result is valid Java source code.

2.2 Upgrading to Java 1.5
Let us now consider how we could adapt this client to the

Java 1.5 version. In this case, the service component would
resemble the one shown in Figure 2.

In this case, all the values are accessed through one method,
which takes a selector argument. We have given the field
HOUR OF DAY an explicit label hourMarker, which links it
to its possible use as an argument for the get(int) method.
We group invariants and postconditions as a disjunction of
conjunctions using the (a, b, . . . )? syntax, which makes the
pre- and postconditions inside the group optional. The plan
search now takes the same query as a starting point, but
the APIs supplied as input are different (and perhaps the
1.5 API is marked as taking precedence over the 1.4 one if
both are available) and after substituting a solution for the
query we end up with:

c l a s s TimeUt i l s implements TimeAndDate {
vo id p r i n tHou r ( ) {

Date v1 = new Ca l enda r ( ) ;
i n t v2 = Ca l enda r .HOUR OF DAY;
i n t hour = v1 . ge t ( v2 ) ;
System . out . p r i n t l n ( ”The c u r r e n t hour i s : ”

+ hour ) ;
}

}

We show the plans visually in Figure 3. The resulting
code is extracted directly from the plans. Rounded boxes

new Calendar()

get(int)

(Calendar, 
defaultTimeZone)

(int, nowHour)

Start

Finish

Calendar.HOUR_OF_DAY

(int, hourMarker)

new Date()

getHour()

(Date, currentTime)

(int, nowHour)

Start

Finish

Java 1.4 Java 1.5

Figure 3: Visual representations of generated plans
in Java 1.4 and 1.5, respectively.

are pre- and postconditions (the existence of a variable with
a given label), and square boxes are actions such as method
invocation and field access. Dashed lines represent sequen-
tial constraints, which impose an ordering on the actions.
These constraints will be at least as strong as the dataflow
dependencies of the solution, and possibly stronger due to
possible conflicts.

These examples demonstrate how clients can automati-
cally be reconfigured to use a new version of an API, or
even a different API, given that the necessary annotations
are present on both the client and the service side. In this
case it would simply be a matter of re-running the integra-
tion tool with the newest service components added to the
classpath.

Labels correspond to the ability of variables to partici-
pate in a given use case for an API. In the example shown
here, they simply classify values according to what is being
represented. A specification such as this: defaultTimeZone,
(selector: hourMarker, result: +nowHour)? signifies that, as-
suming that the receiver is a defaultTimeZone, and that se-
lector is an hourMarker, the return value will be able to par-
ticipate in API usages that require a nowHour integer. This
specification was derived in a straightforward manner from
the Javadoc API documentation. However, in the full ver-
sion of Poplar, which also constrains pointer aliasing, it is
sometimes necessary to have access to either detailed docu-
mentation or the full source code of service components.

3. PLANNING AND CODE GENERATION



The design of Poplar does not restrict the choice of plan-
ning or search algorithm that is to be used for the code gen-
eration, but in early experiments on a prototype, we have
found Partial Order Planning (POP) to be a useful algo-
rithm.

POP gradually refines a partial ordering of some set of
actions. In principle, it searches the space of all possible
plans. Java statements are already in some sense partially
ordered, for instance through dataflow dependencies. POP
is also relatively easy for humans to understand and reason
about, which may be valuable if there is a need to tweak
annotations. The basic idea of the POP algorithm is that it
gradually strengthens an ordering of actions, inserting causal
links (connecting post- and preconditions of related actions)
and new actions as necessary while maintaining a set of open
preconditions. Conditions will be either of the form new(T,
l), indicating a new variable of a given type and label, or
label(x, l), indicating that a variable has a certain label.
Note that the full version of Poplar also allows labels to
be erased: code fragments can satisfy certain goals while
undoing others.

A backward search from the goal towards the initial con-
dition is performed as follows.

1. Initialise the plan to have two pseudo-actions start and
finish. The effects of the start action are identical to
the assumed environment of the plan, i.e. the starting
conditions. The preconditions of the finish action are
identical to the goals of the plan.

2. If there are no open preconditions, stop. A solution
has been found.

3. Select an open precondition in the current plan.

4. For all available actions that achieve the precondition
and are either already in the plan or not in the plan,
create a successor plan with this action added. Also
add ordering constraints and causality links for the
new action.

5. For all the successors, resolve any conflicts among the
causality links that might have arisen by strengthening
the ordering constraints. If this is not possible, discard
the successor.

6. Recurse on each successor plan. Go to step 2.

Two heuristics are needed: one for selecting the next open
precondition to plan for, and one for selecting the most ap-
propriate action to attempt for a given precondition, if sev-
eral are available. In our prototype, we give priority to pre-
conditions that either have no available actions to realise
them (a fail-fast strategy) or that have only one available
action (to lock in necessary decisions early). Generally, we
favour preconditions with the smallest amount of available
satisfying actions. We have also experimented with schemes
that favour syntactic locality by preferring fields in the same
class over invoking a method, preferring local methods over
methods in other classes, and so on.

4. DISCUSSION
Due to space constraints, we have omitted many features

of Poplar here. For instance, we classify pointers according

to whether they may be aliased or not, and we have also de-
veloped a kind of label that may be established and erased
as a result of program execution, unlike the immutable la-
bels shown here. We use an effect system to reason about
changes in label sets over time. This means that we can
reason about methods both in terms of an upper bound on
their destructive side effects, and in terms of a lower bound
on their useful side effects.

The approach we have presented allows us not only to
perform integrations, but also to verify that new versions
of a component are valid with respect to the existing client
code. When we generate code, we can also output a set of
integration assumptions for each query that we solve. This
information can be stored as an additional attribute in Java
class files, for instance. When new service-side components
are published, they can be checked against this information
to verify whether they are valid without a recompilation. If
they are not, we may attempt to find new solutions for those
queries that are incompatible with the new API.

We are not simply moving the integration problem to a
higher level of abstraction. Once Poplar labels have been
added to an API, integrations can be performed if and only
if the desired output labels, which are requested in client
queries, can be produced by putting together some combi-
nation of methods and fields, given the input labels made
available by the client. This allows for a lot of structural
evolution in APIs; changes such as method renaming and
moving methods to different classes are fully or almost fully
transparent (depending on the heuristics being used).

An important limitation is that control flow constructs
are not generated. For instance, we do not generate loops
or if-statements. Users must deal with this manually when
needed. For an iterator, separate queries could be used for
the truth condition and for the loop body.

Developers might be concerned about the fact that gen-
erated code can vary from time to time. In order to protect
against unwanted effects, variables with the same type and
labels must be truly equivalent. If they are not substitutable
for each other, more labels should be added to disambiguate.

In adopting Poplar, it is necessary to add annotations to
new or existing Java code. It should be possible to make a
tool that infers some or all of this information, given mini-
mal annotations as a starting point. For instance, in [2], the
authors prove the correctness of an effect inference algorithm
for the Boyland-Greenhouse effect system, a modification of
which is used in full Poplar. It is also possible to infer proto-
cols from a code base, as in [10]. In addition, when Poplar is
introduced into an existing code base, it should be possible
to start with a small number of queries and annotations, and
gradually expand the use of Poplar within the code base.

5. RELATED WORK
One of the first descriptions of the partial order planning

algorithm was given by Allister and Rosenblatt [11].
There are many approaches to component integration through

code synthesis. Haack [5] has created a system that unifies
software components in the ML language by generating code
from uninterpreted, atomic annotations, much like Poplar.
However, given the differences between ML and Java, and
that ML unification is the central technique in Haack’s work,
it is not clear if the findings can be applied to an imperative
object-oriented setting.

Ireland and Stark [6] have designed a system that com-



bines proof plans and partial order planning to generate
small imperative programs. The heuristics and proof critics
used here are adopted from the literature on Structured Pro-
gramming, which describes principles that are to be used for
manual goal-directed programming. This should be a valu-
able avenue for future investigation of heuristics for Poplar.

Evolution and adaptation is a well studied problem. Dig [4]
has carried out an empirical study of component evolution.
Strikingly, he found that between 81% and 100% of all break-
ing changes in several large systems were due to refactorings.
Vasa et al [16] provide a high level quantitative picture of
software evolution.

Zaremski and Wing [17] have studied component discovery
and matching. However, as has been argued, by Kell [8,
7], for instance, composition is often not just a problem of
discovering a match but also a problem of assembling and
adapting what has been found.

Our approach has similarities with typestate checking.
Typestate was first introduced by Strom and Yemini [13]
as an approach to checking valid interactions with primitive
types and simple data structures. Deline and Fähndrich [3]
describe how typestate checking can be applied to a core
subset of C#.

Mandelin et al. [10] describe a tool that mines typestate-
like protocols from code bases, something that could be use-
ful in generating initial Poplar annotations. Their protocols
are not declared explicitly; instead, a sequence of method
invocations is presumed to be acceptable when it is found
in a code base that is taken to be correct. Also, their tool is
designed to assist the programmer in interactive use, rather
than as a language extension.

6. CONCLUSION AND FUTURE WORK
We have presented Poplar, a Java extension designed for

automated component integration based on queries and code
generation. By annotating individual variables in interfaces,
we describe components in such a way that integration links
can be generated, checked and re-integrated in a flexible
fashion. We believe that the integration approach presented
here could be an important step towards greater reusability
and ease of maintenance in component-based development.

In future work, most importantly, we aim to provide a
practical implementation and investigate how Poplar works
in practice. We are also working on a formalisation of Poplar,
based on MJ [2].
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