Automated Java component assembly with Poplar

NIl/University of Tokyo, Honiden lab., Johan Nystrém-Persson
johan@nii.ac.jp http://www.poplar-lang.org

Poplar is a Java extension that was designed in order to help programmers handle APl changes that
occur naturally as a result of class and component upgrades. Poplar generates, checks and regenerates
integration code automatically.

class Customer { class Account {
Account a: (hone);)
void doTransactions() { double aBalance = @d;
double d: = 5.0; . .
int id: - 3145; void deposit(double amount)
//Integration query aBalance += amount;
#transform(d, deposited); ¥
1 ¥ void withdraw(double amount)
{
In Poplar, Java methods are annotated with extra aBalance -= amount;
information that indicates the purposes of fields, ¥
variables, and methods, and how they may }
interact with each other.

In response to an integration query, which can
request transformation or production, Poplar is able to generate a plan for the integration and extract
generated code from it. The following plan corresponds to the Java code this.a.deposit(d); .

start(dummy)[2]

this,Customer,any)

d,double depositAmount)

gen_1,Account,any)

recv 0

deposit[4]

res | recv | O

(d,double deposited)

finish(dummy)[3]

The following is a more advanced Account class, which requires a transaction to be opened and
identified by a Token, in order to achieve the same functionality as simple Account.

Protocols such as txn@clean->dirty indicate a transition between two mutually exclusive states. Effects
can reside in abstract resources using an annotation such as [* transactions]. If the method
stopAllTransactions is invoked, then the effects associated with this resource are logically destroyed.

mailto:johan@nii.ac.jp
mailto:johan@nii.ac.jp

package oh2011;
class SecureAccount {
double aBalance;
static class Token { ... }

Token beginTransaction(int id)

{
}

return new Token(); //etc.

void secureDeposit(Token token, double amount)

aBalance += amount; //etc.

void finishDeposit(Token token, double amount)

{
commit(token); //etc.
}
void stopAllTransactions() { ...}
}
start(dummy)[2]
(this,Customer,any)
Field a[7] (id,int,customerId)
(gen_2 SecureAccount,any)
recv | 0
(gen_2,SecureAccount,any) | beginTransaction[9]
res | recv | 0
(gen_2,SecureAccount,any) AA_I ,Token txn.clean)
recv | 0 I 1
secureDeposit[6]

res|r9p|0|l

(gen_1,Token,txn.dirty) Xd,double,proc.dirty)

recv | 0 | 1
finishDeposit[5]

res|recv|0]1

(d,double deposited)

finish(dummy)[3]

The figure below shows the plan
that integrates the same client with
the secure account (except that the
type of the Account a field was
changed to SecureAccount a).

This corresponds to the following Java
code:

Token t = a.beginTransaction
(idd;

a.secureDeposit(t, d);
a.finishDeposit(t, d);

A first release of the Poplar
compiler, with limited features, is
planned for late June 2011. Please
check http://www.poplar-lang.org
for news and downloads at that
time.

(d,double depositAmount)

http://www.poplar-lang.org
http://www.poplar-lang.org

