
Automated Java component assembly with Poplar
NII/University of Tokyo, Honiden lab., Johan Nyström-Persson
johan@nii.ac.jp http://www.poplar-lang.org

Poplar is a Java extension that was designed in order to help programmers handle API changes that
occur naturally as a result of class and component upgrades. Poplar generates, checks and regenerates
integration code automatically.

In Poplar, Java methods are annotated with extra
information that indicates the purposes of fields,
variables, and methods, and how they may
interact with each other.
In response to an integration query, which can
request transformation or production, Poplar is able to generate a plan for the integration and extract
generated code from it. The following plan corresponds to the Java code this.a.deposit(d); .

start(dummy)[2]

finish(dummy)[3]

recv 0

deposit[4]

res recv 0

(d,double,depositAmount)Field a[5]

(this,Customer,any)

(d,double,deposited)

(gen_1,Account,any)

The following is a more advanced Account class, which requires a transaction to be opened and
identified by a Token, in order to achieve the same functionality as simple Account.
Protocols such as txn@clean->dirty indicate a transition between two mutually exclusive states. Effects
can reside in abstract resources using an annotation such as [* transactions]. If the method
stopAllTransactions is invoked, then the effects associated with this resource are logically destroyed.

class Customer {
	
	 Account a: (none);	
	 void doTransactions() {
	 	 double d: (depositAmount) = 5.0;
	 	 int id: (customerId) = 3145;	

	 	 //Integration query	
	 	 #transform(d, deposited);
	 }	
}

class Account {
	 resource balance;
	
	 double aBalance = 0d;
	
	 void deposit(double amount)
	 	 amount: depositAmount, +deposited. {
	 	 aBalance += amount;
	 }
	
	 void withdraw(double amount)
	 	 amount: withdrawAmount, +withdrawn.
	 {
	 	 aBalance -= amount;
	 }	
}

mailto:johan@nii.ac.jp
mailto:johan@nii.ac.jp

The figure below shows the plan
that integrates the same client with
the secure account (except that the
type of the Account a field was
changed to SecureAccount a).
This corresponds to the following Java
code:

Token t = a.beginTransaction
(id);
a.secureDeposit(t, d);
a.finishDeposit(t, d);

A first release of the Poplar
compiler, with limited features, is
planned for late June 2011. Please
check http://www.poplar-lang.org
for news and downloads at that
time.

package oh2011;

class SecureAccount {	
	 resource balance, transactions;	
	 double aBalance;
	
	 static class Token { ... }
	
	 Token beginTransaction(int id)
	 	 id: customerId;
	 	 result: +txn@clean [*transactions].
	 {
	 	 return new Token(); //etc.
	 }	
	
	 void secureDeposit(Token token, double amount) [!balance]
	 	 token: txn@clean->dirty [*transactions];
	 	 amount: depositAmount, +proc@dirty.
	 {
	 	 aBalance += amount; //etc.
	 }
	
	 	
	 void finishDeposit(Token token, double amount)
	 	 token: txn@dirty->committed [*transactions];
	 	 amount: proc@dirty->deposited, +deposited.
	 	 {
	 	 	 commit(token); //etc.
	 	 }

	 void stopAllTransactions() [!transactions] { ... }
}

recv 0 1

secureDeposit[6]

res recv 0 1

finish(dummy)[3]

recv 0 1

finishDeposit[5]

res recv 0 1

(gen_1,Token,txn.dirty) (d,double,proc.dirty)

recv 0

beginTransaction[9]

res recv 0

(gen_1,Token,txn.clean)

(d,double,deposited)

start(dummy)[2]

(d,double,depositAmount)

(id,int,customerId)Field a[7]

(this,Customer,any)

(gen_2,SecureAccount,any)

(gen_2,SecureAccount,any)

(gen_2,SecureAccount,any)

http://www.poplar-lang.org
http://www.poplar-lang.org

