
Java Composition with Labels and AI Planning

Johan Nyström-Persson (johan@nii.ac.jp)

Dept. of Computer Science
University of Tokyo / NII (Honiden laboratory), Japan

Shinichi Honiden (honiden@nii.ac.jp)
Dept. of Computer Science, University of Tokyo / NII, Japan

Monday, October 24, 2011

Motivation

• Software construction from libraries and components is now the
dominant paradigm

• Java is an excellent language for component-based software development

• However, component integration and re-integration remains difficult

• Integrating components in the first place

• Re-integrating after evolution

Monday, October 24, 2011

Difficulty of integration

• Dependencies between classes from different components in Java are
encoded as method calls or as field reads/writes

• In order to use an API, we need knowledge that is not formally specified

• The meaning and usage of each argument of a method, of return values
etc.

• Temporal constraints (correct order of method invocations etc.)

• These constraints evolve over time, causing breaking changes; a well known
problem1,2

1. Shaw, “Procedure Calls are the Assembly Language of Software Interconnections.” Proc Workshop Studies
of Software Design, 1993
2. Kell, “The Mythical Matched Modules.” OOPSLA, 2009

Monday, October 24, 2011

A typical syntactic breaking change

• The time and date API changed substantially between Java 1.4 and 1.5 (see
below)

• The capabilities of the time and date component have not been reduced,
but the structure of the interface has changed.

• Idea: we should depend on and provide capabilities, not interface details

i n t e r f a c e TimeAndDate {
l a b e l s (i n t) nowHour , nowMinute , nowSecond ;

}

c l a s s Date implements TimeAndDate {
l a b e l s cu r r en tT ime ;
Date ()

r e s u l t : +cur r entT ime ;
i n t GetHour ()

t h i s : cur rentTime ,
r e s u l t : + nowHour ;

/∗ S im i l a r a nno t a t i o n s f o r getMinute () ,
getSecond () , e t c . ∗/

}

Figure 1. TimeAndDate annotations for Java 1.4.

tions in Section 7. Finally, we discuss related work (Sec-
tion 8) and conclude the paper (Section 9).

Throughout this paper, we disregard issues raised by con-
currency or reflection. We discuss a possible approach to ex-
ceptions in Section 9.

2. A basic example
We introduce the Poplar Java integration mechanism using a
simple example from the real world. The time and date API
of the standard Java libraries changed substantially between
version 1.4 and version 1.5 of the language. In version 1.4,
the following code was used to obtain the current hour of the
day:
Date now = new Date () ;
i n t hour = now . getHour () ;

In Java 1.5 and later versions, the following code is used:
Ca l enda r now = Ca l enda r . g e tCa l enda r () ;
i n t hour = now . ge t (Ca l enda r .HOUR OF DAY) ;

Even though the Java 1.5 libraries keep the old version of
the API, this is representative of a breaking change that may
occur in practice, and API publishers generally prefer not to
have to preserve old versions.

In principle, Poplar considers integration sites to have one
of two possible purposes: producing values or producing ef-
fects. In these two cases we use produce queries and trans-
form queries, respectively. Clearly, in this case, a client com-
ponent that wants to use the time and date API wants to do
the former. Before we can request the production of a value,
we must annotate the API that is provided by the service
component. In the case of Java 1.4, the component supplier
should provide annotations similar to the ones in Figure 1.

2.1 Labels
We have added the labels annotation as a new member of
classes and interfaces. In the case of the interfaceTimeAndDate,
labels are provided for the int type using the notation
labels(int). Once these labels have been defined, we can log-
ically distinguish between integers that have these labels and
integers that do not, as a lightweight refinement of the type

system. Since the Date class implements TimeAndDate,
references to nowHour in this class are understood to refer
to the label defined in the TimeAndDate interface, but it is
possible for other interfaces to define labels with the same
name, and their meaning might be different. Disambiguation
should be done in the usual way using fully qualified names
where necessary.

In the Date class we have added pre- and postconditions
to the methods. The constructor Date() declares that the re-
sult, ie the return value, will have the new label currentTime.
This label was declared in the Date class itself. The + sign
indicates that a new label is added. In contrast, the getHour
method indicates that for the this variable, the receiver of the
method, an invariant of the currentTime label is expected -
the label must be owned by the this object prior to method
invocation, and it will remain after the invocation. When this
method is invoked, the return value will be an integer which
has the nowHour label. Here, the labels describe one kind
of useful application of the method, but not mandatory con-
straints on it. It is still valid to invoke this method when the
this variable does not have the currentTime label, but in this
case, unless the annotations are augmented beyond what is
shown here, we can make no assumptions about the return
value. As for the client component which wants to produce
the value corresponding to the current hour of the day, its
code should resemble the following:

c l a s s TimeUt i l s implements TimeAndDate {
vo id p r i n tHou r () {

i n t hour = #produce (i n t , nowHour) ;
System . out . p r i n t l n (”The c u r r e n t hour i s : ”

+ hour) ;
}

}

Again, we use the TimeAndDate interface to refer to the
nowHour label. We request a production of an integer value
with this label using the #produce query. We prefix queries
with a ’#’ sign to distinguish them from normal Java code.
At compile time, the Poplar solver will find a solution to
this query and replace it with a sequence of Java statements.
Such statements can be field accesses or method invocations,
including constructor invocations. In principle, queries may
occur anywhere that a sequence of statements can occur.
This means almost anywhere in a method body, but not as
truth conditions in if-statements or while-loops, for instance.
Code resulting from queries may return a single value, and
the queries may thus be “assigned” to a variable, as in the
example we have just shown.

The solver uses a planning algorithm to find a solution
to the query. The plan search will proceed backwards from
the goal to the assumptions. In this case, the goal is the exis-
tence of a variable of type int and with label nowHour. First
the planner needs to find all actions that can produce such a
variable (method invocations and field accesses). If the only
one available is the one we declared above (Date.getHour),
then once this method has been selected, a new set of precon-

DRAFT - do not copy or quote 3 2011/4/15

i n t e r f a c e TimeAndDate {
l a b e l s (i n t) nowHour , nowMinute , nowSecond ;

}

c l a s s Date implements TimeAndDate {
l a b e l s cu r r en tT ime ;
Date ()

r e s u l t : +cur r entT ime ;
i n t GetHour ()

t h i s : cur rentTime ,
r e s u l t : + nowHour ;

/∗ S im i l a r a nno t a t i o n s f o r getMinute () ,
getSecond () , e t c . ∗/

}

Figure 1. TimeAndDate annotations for Java 1.4.

tions in Section 7. Finally, we discuss related work (Sec-
tion 8) and conclude the paper (Section 9).

Throughout this paper, we disregard issues raised by con-
currency or reflection. We discuss a possible approach to ex-
ceptions in Section 9.

2. A basic example
We introduce the Poplar Java integration mechanism using a
simple example from the real world. The time and date API
of the standard Java libraries changed substantially between
version 1.4 and version 1.5 of the language. In version 1.4,
the following code was used to obtain the current hour of the
day:
Date now = new Date () ;
i n t hour = now . getHour () ;

In Java 1.5 and later versions, the following code is used:
Ca l enda r now = Ca l enda r . g e tCa l enda r () ;
i n t hour = now . ge t (Ca l enda r .HOUR OF DAY) ;

Even though the Java 1.5 libraries keep the old version of
the API, this is representative of a breaking change that may
occur in practice, and API publishers generally prefer not to
have to preserve old versions.

In principle, Poplar considers integration sites to have one
of two possible purposes: producing values or producing ef-
fects. In these two cases we use produce queries and trans-
form queries, respectively. Clearly, in this case, a client com-
ponent that wants to use the time and date API wants to do
the former. Before we can request the production of a value,
we must annotate the API that is provided by the service
component. In the case of Java 1.4, the component supplier
should provide annotations similar to the ones in Figure 1.

2.1 Labels
We have added the labels annotation as a new member of
classes and interfaces. In the case of the interfaceTimeAndDate,
labels are provided for the int type using the notation
labels(int). Once these labels have been defined, we can log-
ically distinguish between integers that have these labels and
integers that do not, as a lightweight refinement of the type

system. Since the Date class implements TimeAndDate,
references to nowHour in this class are understood to refer
to the label defined in the TimeAndDate interface, but it is
possible for other interfaces to define labels with the same
name, and their meaning might be different. Disambiguation
should be done in the usual way using fully qualified names
where necessary.

In the Date class we have added pre- and postconditions
to the methods. The constructor Date() declares that the re-
sult, ie the return value, will have the new label currentTime.
This label was declared in the Date class itself. The + sign
indicates that a new label is added. In contrast, the getHour
method indicates that for the this variable, the receiver of the
method, an invariant of the currentTime label is expected -
the label must be owned by the this object prior to method
invocation, and it will remain after the invocation. When this
method is invoked, the return value will be an integer which
has the nowHour label. Here, the labels describe one kind
of useful application of the method, but not mandatory con-
straints on it. It is still valid to invoke this method when the
this variable does not have the currentTime label, but in this
case, unless the annotations are augmented beyond what is
shown here, we can make no assumptions about the return
value. As for the client component which wants to produce
the value corresponding to the current hour of the day, its
code should resemble the following:

c l a s s TimeUt i l s implements TimeAndDate {
vo id p r i n tHou r () {

i n t hour = #produce (i n t , nowHour) ;
System . out . p r i n t l n (”The c u r r e n t hour i s : ”

+ hour) ;
}

}

Again, we use the TimeAndDate interface to refer to the
nowHour label. We request a production of an integer value
with this label using the #produce query. We prefix queries
with a ’#’ sign to distinguish them from normal Java code.
At compile time, the Poplar solver will find a solution to
this query and replace it with a sequence of Java statements.
Such statements can be field accesses or method invocations,
including constructor invocations. In principle, queries may
occur anywhere that a sequence of statements can occur.
This means almost anywhere in a method body, but not as
truth conditions in if-statements or while-loops, for instance.
Code resulting from queries may return a single value, and
the queries may thus be “assigned” to a variable, as in the
example we have just shown.

The solver uses a planning algorithm to find a solution
to the query. The plan search will proceed backwards from
the goal to the assumptions. In this case, the goal is the exis-
tence of a variable of type int and with label nowHour. First
the planner needs to find all actions that can produce such a
variable (method invocations and field accesses). If the only
one available is the one we declared above (Date.getHour),
then once this method has been selected, a new set of precon-

DRAFT - do not copy or quote 3 2011/4/15

Java 1.4 Java 1.5

Monday, October 24, 2011

Producing values: JDBC example

void m(Properties p) { /* Inputs: p, url, query, column */
String url = “jdbc:mysql://localhost:3306/...”;
String query = “select * from data where item.value > 5;”;
int column = 1;

Connection c = DriverManager.getConnection(url, p);
Statement s = c.createStatement();
ResultSet rs = s.executeQuery(query);
while (rs.next()) {

int target = rs.getInt(column); //Target value
//...

}
}

• Goal: produce a certain kind of value (the integer field from the
database) given certain inputs

• This code depends on method names, relations between methods, type
signatures etc.

• Idea: try to find the necessary code using a search algorithm

Monday, October 24, 2011

Type based search, leads to errors

Connection
(static)

DriverManager.
getConnection(

String Properties)

Statement Connection.createStatement()

ResultSet Statement.executeQuery(String)

ResultSet

ResultSet Statement.getGeneratedKeys()

Properties (static)
System.getProperties

String (static)
System.getEnv(String)

• Much of the code fragment can be constructed by a reverse type based search

• In case of very general types (String, int...) many possibilities are incorrect

ReturnType Owner.method(ArgType)

Inspired by: Mandelin, Xu, Kimelman and Bodik. “Jungloid Mining: Helping to Navigate the API Jungle.” PLDI 2005

Monday, October 24, 2011

Label augmented types

Connection (static)
DriverManager.getConnection(String:connectionUrl Properties:connectionProperties)

Statement:queryStatement Connection.createStatement()

ResultSet:queryResults Statement:queryStatement
.executeQuery(String:queryString)

ResultSet:queryResults

ResultSet Statement.getGeneratedKeys()

Properties (static)
System.getProperties

String (static)
System.getEnv(String)

Properties:connectionProperties

String: connectionUrl

String: queryString

• Can rule out incorrect choices by specifying variables with labels

• Label based selection has been attempted for ML and Lambda calculus1, not Java

ReturnType Owner.method(ArgType)

1. Garrigue and Furuse. “A Label-Selective Lambda Calculus with Optional Arguments and its Compilation Method.” 1995

Monday, October 24, 2011

Transforming values: Socket example

void m(byte[] data) {
Socket s = new Socket(“localhost”, 3000);
OutputStream o = s.getOutputStream();
o.write(data);
s.close();

}

• The purpose of this code is to send the data, i.e. to cause a side effect

• Can we achieve this through search?

• Idea: describe label changes in method signatures

Monday, October 24, 2011

Requesting transformations (additional labels)

Socket:connected new Socket(String:address, int:port)

OutputStream:socketStream Socket:connected .getOutputStream()

void OutputStream:socketStream
.write(byte[] data: +sent)

void Socket:
+closed .close()

#transform(data, sent)#transform(socket, closed)

String:address int: port byte[] data

Monday, October 24, 2011

Two kinds of capabilities

• Given some existing variables, with known types and labels:

• Produce capability

• Produce a new variable of a given type, with given labels

• Transform capability

• Transform an existing variable to give it additional labels

Monday, October 24, 2011

AI planning at the level of variables

• Searching for code to integrate components resembles an AI planning
problem

• Identifying a sequence of actions that may interfere with each other

• Approach: describe variables in interfaces in such a way that
we can apply planning algorithms to generate integration code

• Generate safe and correct code that can be mixed with handwritten code

• Describe and request useful, composable API usage patterns

Monday, October 24, 2011

Core features of Poplar

• A Java extension that compiles to pure Java code (no runtime support)

• Associate a dynamic set of labels with each variable

• Specify how methods depend on and modify labels

• A planning algorithm searches for solutions (code) by using the labels.
Solutions satisfy queries.

• A query and a solution form an integration link.

Monday, October 24, 2011

Example: a Poplar declaration

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @configured;

void connect(Address a)
this: +@connected, @configured;
a: connectionAddress. {

//...
}

void disconnect() {
//...

}
}

}

• Properties (name begins with
@) are labels that can be
erased

• A property represents a
configuration of the object’s
internal state

• @x: invariant

• +@x: postcondition

Monday, October 24, 2011

Related: Typestate Checking

• Typestate1,2,3 etc. typically describes objects as
state machines in order to check for invalid API
usage

• For example, Sockets can be in a “connected”
state or a “closed” state

• Methods may express pre- and postconditions
on object state

1. Yellin and Strom. “Typestate: A New Programming Language Concept for
Software Reliability.” IEEE Trans Softw Eng. 1986.

2. Deline and Fähndrich. “Typestates for Objects.” ECOOP, 2004.

3. Bierhoff and Aldrich. “Modular Typestate Checking of Aliased Objects.”
OOPSLA, 2007

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

raw

Monday, October 24, 2011

Poplar compared to typestate

• We must describe not just legal API sequences but also useful API
sequences.

• A Poplar state is a set of labels, so clients can depend on any subset of a
state.

• This is a source of slack for future evolution!

• We allow any class to provide labels for any other classes

• Typestates are only provided by a class for itself

Monday, October 24, 2011

Tracing properties

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @configured;

void connect(Address a)
this: +@connected, @configured;
a: connectionAddress. {

//...
}

void disconnect() {
//...

}
} class Client {

Address a(connectionAddress);
void m(Connector c) mutates
c.connection: c: -@configured. {

c.connect(a);
c.disconnect();

}
}

Labels of c after execution

@configured
@connected, @configured
(none)

• Properties are erased through resource
mutations, an idea adapted from the
Boyland-Greenhouse system

• Mutating a resource erases all of its
properties, unless we specify otherwise

• In addition to generating code, we can
verify handwritten code w.r.t. a mutation
summary such as mutates
c.connection

Monday, October 24, 2011

Related: Boyland-Greenhouse Effect System1

• Every object has a hierarchy of abstract regions, which are groups of fields
(polymorphic)

• B-G system tracks reads and writes of fields; the purpose is to know whether
two statements may interfere with each other (boolean)

• Our system tracks creation and destruction of labels. If there is
interference, we can know which labels may be destroyed as a result.

1. Boyland and Greenhouse. “An Object-Oriented Effects System.” ECOOP, 1999

Monday, October 24, 2011

Queries and solutions

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected;

void connect(Address a)
this: +@connected;
a: connectionAddress. {

//...
}

void disconnect()
this: -@connected, +@disconnected. {

//...
}

class Client {
Address a(connectionAddress);
void m(Connector c) mutates c.connection:

c: {
#transform(c, @connected);
#transform(c, @disconnected);

}
}

Generated code

c.connect(a);
c.disconnect();

• When we solve a query,
we generate a set of
goal conditions from
the query and
assumptions from the
context

• In general, we
construct a partially
ordered sequence of
actions using a
planning algorithm

(start)

connect(a)

#transform(c,
@connected)

disconnect()

#transform(c,
@disconnected)

@connected

@disconnected

@connected

this.a

connectionAddress

Monday, October 24, 2011

Evolving the Connector

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected,
@configured;

void setAddress(Address a)
a: connectionAddress;
 this: +@configured. { // ... }

void connect()
this: +@connected, @configured. {

//...
}

void disconnect()
this: -@connected, +@disconnected. {

//...
}

}
}

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected;

void connect(Address a)
this: +@connected;
a: connectionAddress. {

//...
}

void disconnect()
this: -@connected, +@disconnected. {

//...
}

Old New

Monday, October 24, 2011

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected, @configured;

void setAddress(Address a)
a: connectionAddress;
 this: +@configured. { // ... }

void connect()
this: +@connected, @configured. { //... }

void disconnect()
this: -@connected, +@disconnected. { //... }

}
}

Integrating with the new Connector

class Client {
Address a(connectionAddress);
void m(Connector c) mutates c.connection:

c: {
#transform(c, @connected);

#transform(c, @disconnected);
}

}

Generated code

c.setAddress(a);
c.connect();
c.disconnect();

(start)

connect()

#transform(c,
@connected)

disconnect()

#transform(c,
@disconnected)

@connected, @configured

@disconnected

@connected, @configured

setAddress(a)

@configured

Monday, October 24, 2011

Intended workflow

New
system
design

(Re)generate
integration links

from queries
(automated)

Client
component

changes

Update client-side
Poplar

annotations

Service
component

changes

Update service-
side Poplar
annotations

Republish

System OK Verify
integration links

(automated)

Redesign
system

Fail

Succeed

Fail

Succeed

Start

Monday, October 24, 2011

Limitations of our design

• We don’t encode control flow information (branches, loops and so on), so this
must be handled externally

• No support for exceptions, concurrency, generics

• It is essential to preserve the meaning of each individual label across program
upgrades

Monday, October 24, 2011

Jardine, a Poplar implementation

• The first prototype release will be available for download at http://
www.poplar-lang.org very soon

• Based on David Pearce’s JKit1 Java compiler; written in Java and Scala

• Checks Poplar constraints and solves queries, compiles Poplar source files to
Java classes

• Co-implemented with Alexandre Pichot, UPMC, France

1. Pearce, David. “JPure: A Modular Purity System for Java.”, CC 2011

Monday, October 24, 2011

http://www.poplar-lang.org
http://www.poplar-lang.org
http://www.poplar-lang.org
http://www.poplar-lang.org

Summary of results

• The language design appears to be useful for describing real APIs (Swing,
JDBC)

• Modular compilation, polymorphism

• A strategy for handling aliasing

• Built-in slack allows for future evolution

• A formalisation based on Middleweight Java1

1. Nyström-Persson, Pichot and Honiden. Evolvable Java Composition with Stateful Labels and Effects. ESOP
2012, under review.

Monday, October 24, 2011

Conclusion

• We propose a novel approach to Java component specification and
integration, based on AI planning

• We combine ideas from typestate checking and from effect systems

• Verification of code, generation of integration links and verification of
integration links are all possible

• Initial integration becomes easy

• Staying integrated when components evolve becomes easy

Monday, October 24, 2011

Future work

• Case studies on software evolution in practice

• Further Jardine improvements

• Minor enhancements and bugfixes (short term)

• Verification of integration links (long term)

• More comprehensive formalisation

• Type safety proof

• Full “Poplarisation” of selected Java libraries

Monday, October 24, 2011

The presentation ends here. Extra slides after this
point.

Monday, October 24, 2011

Generating and evolving integration links

Sa

C1 C2 C3

SbEvolution Sa

C1 C2 C3

SbEvolution

Generate
Generate

Integration link = query + solution

Monday, October 24, 2011

Related: Middleweight Java (MJ)

• Minimal calculus for an imperative fragment of Java (with side effects) by
Parkinson, Bierman, Pitts1

• The MJ authors prove the safety of a simplified form of the Boyland-
Greenhouse effect system

• We use MJ as a basis for formalisation of Poplar.

• FJ is a more well-known core calculus for Java, but unsuitable, since it has no
side effects (in particular, no assignment)2

1. Bierman, Parkinson and Pitts. “MJ: An Imperative Core Calculus for Java and Java with Effects.” 2003
2. Igarashi, Pierce and Wadler. “Featherweight Java: A Minimal Core Calculus for Java and GJ.” TOPLAS, 2001

Monday, October 24, 2011

Other related work

• Label-selective lambda calculus1

• As far as we know, Poplar is the first application of label based argument
selection to Java

• Fully automated adaptation of ML components2

• Ownership systems3

• Jungloid mining4

1. Garrigue and Furuse. “A Label-Selective Lambda Calculus with Optional Arguments and its Compilation
Method.” 1995
2. Haack, Howard, Stoughton and Wells. “Fully Automated Adaptation of Software Components Based on
Semantic Specifications”, AMAST 2002
3. Clarke, Potter and Noble. “Simple Ownership Types for Object Containment.” ECOOP 2001
4. Mandelin, Xu, Kimelman and Bodik. “Jungloid Mining: Helping to Navigate the API Jungle.” PLDI 2005

Monday, October 24, 2011

Conflict of evolution and integration

• Software developers often want to refactor their code, i.e. make systematic
structural changes

• It has been found1 that a majority of breaking changes (changes that cause
bugs or compilation errors) in large software systems stem from refactoring

• Bloch2 and Fowler3 recommend that published interfaces should be changed
minimally and that they should be as small as possible

• The greater the number of components that must remain integrated, the
harder it is to evolve the program

1. Dig and Johnson. “The Role of Refactorings in API Evolution.” ICSM 2005
2. Bloch. “Effective Java.” 2001
3. Fowler et al. “Refactoring.” 1999

Monday, October 24, 2011

Additional features of Poplar

• Composite properties: alternative names for conjunctions of labels

• External resources/properties: labels of one object can be represented in
another object

Monday, October 24, 2011

Handling aliasing with uniqueness kinds

• Uniqueness kinds classify each variable
according to a) uniqueness or non-
uniqueness, and b) preservation of
uniqueness

• Unique: definitely unique, preserves
uniqueness

• Maintain: possibly unique, preserves
uniqueness

• Normal: not unique, does not preserve
uniqueness

• Fresh: new and unique, can be
converted to any other uniqueness kind

class Foo {

static Foo getFoo() result: normal. { ... }

Foo() result: fresh. { ... }

void baz() mutates this.baz;

void m1() mutates any(Foo).baz: {
Foo f = getFoo(); //f is aliased
f.baz();

}

void m2 {
Foo f(unique) = new Foo(); //f is now
unique
f.baz;

}

Monday, October 24, 2011

Managed/plain boundary

• We divide each component into plain code and managed code

• Constraints such as unique need only be true in managed code, and Poplar
will only use managed code for integrations (logical uniqueness rather than
true uniqueness)

• We make this practical by constraining the flow of data between components
to be in managed code

Monday, October 24, 2011

Example: registry with managed/plain code
class Item {

static List<Item> allItems;

//...
tags usefulItem;
tags(int) numItems;

Item() result: +usefulItem, unique. {
allItems.add(this);

}

resource state {
properties @used;
void use()

this: ++@used. {
}

}

int countItems() result: +numItems. {
return allItems.size();

}

}

class User {
void useItem(Item i) mutates i.state:

i: unique, +@used. {
i.use();

}
}

//if “i” were not unique, the above would be:
//mutates any(Item).state

}

• Managed code is simply code
that has associated Poplar
signatures

• The result of Item() is not truly
unique, but it is unique within the
managed code - “logically
unique”

• We may view the managed code
as an integration interface

• The extra aliases that are created
in the plain code must not be
exposed in managed code

Monday, October 24, 2011

Resource structure (partial) for JDBC

Class

Resource Property

Connection

Statement

ResultSet

warningsstate transaction

results

cursorresults

connection

@open

@dirty

@open @closed

@first

@last

warnings

rowUpdates

Monday, October 24, 2011

Example code
class ResultSet {
 tags(int) resultData, columnIndex;
 tags(String) resultData;

 tags updatable;

 resource warnings {
 void clearWarnings() {}
 }

 resource rowUpdates {
 properties @dirty;
 void cancelRowUpdates() this:updatable. {}
 void updateBoolean(int idx, boolean x) this: updatable, +@dirty. {}
 void updateInt(int idx, int x) this: updatable, +@dirty. {}
 // etc...

 void updateRow() {}
 }

 resource cursor {
 properties @first, @last;

 boolean relative(int rows) this: @open. {}
 boolean absolute(int pos) this: @open. {}
 boolean next() this: @open. {}
 boolean previous() this: @open. {}
 void first() this: @open, +@first. {}
 void last() this: @open, +@last. {}
 }

 int getInt(int index)
 this: @open, index: columnIndex, result: resultData. {}

 String getString(int index)
 this: @open, index: columnIndex, result: resultData. {}
}

• Tags are like properties, but
cannot be erased

class Statement {
 tags(ResultSet) statementResult;
 tags(String) sqlQuery;

 resource(ResultSet) results {
 properties @open;
 links results;
 links ext(Connection).connection;
 }

 resource results {
 ResultSet executeQuery(String query)
 query: sqlQuery, result: statementResult,
+@open. { }
 }
}

Monday, October 24, 2011

Partial Order Planning algorithm (POP)

1. Initialise plan to have two pseudo-actions, start and finish

2. If there are no open preconditions, stop

3. Select an open precondition

4. Create each possible successor with new and existing actions

5. Resolve conflicts in each successor by strengthening ordering

6. Go to step 2

Monday, October 24, 2011

