Poplar
Java Composition with Labels and Al Planning

Johan Nystrom-Persson (johan@nii.ac.jp)

Dept. of Computer Science
University of Tokyo / NIl (Honiden laboratory), Japan

Shinichi Honiden (honiden@nii.ac.jp)
Dept. of Computer Science, University of Tokyo / Nll, Japan

Monday, October 24, 2011

Motivation

e Software construction from libraries and components is now the
dominant paradigm

e Java is an excellent language for component-based software development
e However, component integration and re-integration remains difficult
e Integrating components in the first place

* Re-integrating after evolution

Monday, October 24, 2011

Difficulty of integration

e Dependencies between classes from different components in Java are
encoded as method calls or as field reads/writes

e In order to use an API, we need knowledge that is not formally specified

e The meaning and usage of each argument of a method, of return values
etc.

e Temporal constraints (correct order of method invocations etc.)

e These constraints evolve over time, causing breaking changes; a well known
problem2

1. Shaw, “Procedure Calls are the Assembly Language of Software Interconnections.” Proc Workshop Studies
of Software Design, 1993
2. Kell, “The Mythical Matched Modules.” OOPSLA, 2009

Monday, October 24, 2011

A typical syntactic breaking change

e The time and date APl changed substantially between Java 1.4 and 1.5 (see
below)

e The capabilities of the time and date component have not been reduced,
but the structure of the interface has changed.

¢ |dea: we should depend on and provide capabilities, not interface details

Java 1.4 Java 1.5

Date now
int hour

new Date(); Calendar now = Calendar.getCalendar();
now. getHour () ; int hour = now.get(Calendar.HOUR.OF_DAY) ;

Monday, October 24, 2011

Producing values: JDBC example

void m(Properties p) { /* Inputs: p, url, query, column */
String url = “jdbc:mysql://localhost:3306/...7;
String query = “select * from data where item.value > 5;”;
int column = 1;

Connection ¢ = DriverManager.getConnection(url, p);
Statement s = c.createStatement();
ResultSet rs = s.executeQuery(query);
while (rs.next()) {
int target = rs.getint(column); //Target value

/]...
}
J

e Goal: produce a certain kind of value (the integer field from the
database) given certain inputs

* This code depends on method names, relations between methods, type
sighatures etc.

¢ |dea: try to find the necessary code using a search algorithm

Monday, October 24, 2011

Type based search, leads to errors

(static)
System.getEnv(

(static)

Properties stem.getProperties

(static)

Connection DriverManager. String Properties)
getConnection(
Statement Connection.createStatement()
ResultSet tatement.getGeneratedKeys() ResultSet Statement.executeQuery(String)

e Much of the code fragment can be constructed by a reverse type based search

¢ In case of very general types (String, int...) many possibilities are incorrect
Inspired by: Mandelin, Xu, Kimelman and Bodik. “Jungloid Mining: Helping to Navigate the APl Jungle.” PLDI 2005

Monday, October 24, 2011

Label augmented types

String: connectionUrl

String

(static)
System.getEny(

String)

Properties:connectionProperties

[N

V]

Properties

Connection

(static)

DriverManager.getConnection(

[N

 »

V]

Statement:queryStatement

ResultSet

/N

tatement.getGeneratedKeys()

(static)

ResultSet:queryResults

/| "System.getPror
\
String:cor:ectionUrI Properties:connectionProperties)
Connection.createStatement() String: queryString
S l

ResultSet:queryResults Staterlir;téﬂltjeecr)yust;ts[(ement String:queryString)

T I
: ReturnType t Owner.method(t ArgType)

e Can rule out incorrect choices by specifying variables with labels

e Label based selection has been attempted for ML and Lambda calculus?, not Java

1. Garrigue and Furuse. “A Label-Selective Lambda Calculus with Optional Arguments and its Compilation Method.” 1995

Monday, October 24, 2011

Transforming values: Socket example

void m(byte[] data) {
Socket s = new Socket(“localhost”, 3000);
OutputStream o = s.getOutputStream();
o.write(data);
s.close();

}

e The purpose of this code is to send the data, i.e. to cause a side effect
e Can we achieve this through search?

e |dea: describe label changes in method signatures

Monday, October 24, 2011

Requesting transformations (additional labels)

String:address int: port byte[] data

Socket:connected new Socket(String:address, int:port)

OutputStream:socketStream Socket:connected .getOutputStream()

OutputStream:socketStream

void write(

byte[] data: +sent)

Socket:
+closed .close()

| #transform(socket, closed) | | #transform(data, sent) |

Monday, October 24, 2011

Two Kinds of capabilities

e Given some existing variables, with known types and labels:
* Produce capability
® Produce a new variable of a given type, with given labels
e Transform capability

e Transform an existing variable to give it additional labels

Monday, October 24, 2011

Al planning at the level of variables

e Searching for code to integrate components resembles an Al planning
problem

e |[dentifying a sequence of actions that may interfere with each other

e Approach: describe variables in interfaces in such a way that
we can apply planning algorithms to generate integration code

¢ (Generate safe and correct code that can be mixed with handwritten code

e Describe and request useful, composable API| usage patterns

Monday, October 24, 2011

Core features of Poplar

e A Java extension that compiles to pure Java code (no runtime support)
e Associate a dynamic set of labels with each variable
e Specify how methods depend on and modify labels

e A planning algorithm searches for solutions (code) by using the labels.
Solutions satisfy queries.

e A query and a solution form an integration link.

Monday, October 24, 2011

—xample: a Poplar declaration

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @configured;

void connect(Address a)
this: +@connected, @configured;
a: connectionAddress. {

/]...
J

void disconnect() {

//...
}
J
J

e Properties (name begins with
@) are labels that can be
erased

e A property represents a
configuration of the object’s
iInternal state

e @Xx: invariant

e +@x: postcondition

Monday, October 24, 2011

Related: Typestate Checking

e Typestate’23 ¢t typically describes objects as
state machines in order to check for invalid AP

usage

e For example, Sockets can be in a “connected”
state or a “closed” state

* Methods may express pre- and postconditions
on object state

1. Yellin and Strom. “Typestate: A New Programming Language Concept for
Software Reliability.” IEEE Trans Softw Eng. 1986.

2. Deline and Fahndrich. “Typestates for Objects.” ECOOP, 2004.

3. Bierhoff and Aldrich. “Modular Typestate Checking of Aliased Objects.”
OOPSLA, 2007

send

receive

Vs

Connected

f

connect

Bound

raw

Raw

close

T~

bind

Monday, October 24, 2011

Poplar compared to typestate

e \\Wle must describe not just legal APl sequences but also useful API
sequences.

e A Poplar state is a set of labels, so clients can depend on any subset of a
state.

e This is a source of slack for future evolution!
e \We allow any class to provide labels for any other classes

e Typestates are only provided by a class for itself

Monday, October 24, 2011

Tracing properties

e Properties are erased through resource
class Connector { tati id dapted f th
tags(Address) connectionAddress; mutations, an ladea adaptea from the

Boyland-Greenhouse system
resource connection {

properties @connected, @configured; e Mutating a resource erases all of its
vl @amiceAddiags &) properties, unless we specify otherwise
this: +@connected, @configured; - :
3 Conn@éctionAddreS{ ° ¢ |In addition to generating code, we can
; /1. verify handwritten code w.r.t. a mutation
summary such as mutates
void disconnect() { c.conhnection
/]...
} } class Client { Labels of c after execution

Address a(connectionAddress);
void m(Connector ¢) mutates

c.connection: c: -@configured. { @configured
c.connect(a); @connected, @configured
c.disconnect(); (none)

Monday, October 24, 2011

Related: Boyland-Greenhouse Effect System’

e Every object has a hierarchy of abstract regions, which are groups of fields
(polymorphic)

e B-G system tracks reads and writes of fields; the purpose is to know whether
two statements may interfere with each other (boolean)

e Our system tracks creation and destruction of labels. If there is
interference, we can know which labels may be destroyed as a result.

1. Boyland and Greenhouse. “An Object-Oriented Effects System.” ECOOP, 1999

Monday, October 24, 2011

Queries and solutions

(start)

cs : e \When we solve a query, ¢
class Connector
tags(Address) connectionAddress; we genera_t_e a set of this.a
goal conditions from |
feselines cc_)nnectlon { _ the query and connectionAddress
properties @connected, @disconnected; .
assumptions from the {
void connect(Address a) context
this: +@connected; connect(a)
a: connectionAddress. { .
//... @connected
! ¢ In general, we ¢
i 0 construct a partially
void disconnect #transform(c,
this: -@connected, +@disconnected. { Ord_ered Se.quence of @connected)
/]... actions using a
} planning algorithm @Conie‘ﬁed
class Client { Generated code
Address a(connectionAddress); disconnect()
void m(Connector ¢) mutates c.connection: I
c: { _
#transform(c, @connected); c.connect(a): @disconnected
#transform(c, @disconnected); c.disconnect(); \/

#transform(c,
@disconnected)

Monday, October 24, 2011

—volving the Connector

Old

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected;

void connect(Address a)
this: +@connected;
a: connectionAddress. {

/]...
i

void disconnect()
this: -@connected, +@disconnected. {

/...

New

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected,
@configured;

void setAddress(Address a)
a: connectionAddress;
this: +@configured. {// ... }

void connect()
this: +@connected, @configured. {

/]...
5

void disconnect()
this: —@connected, +@disconnected. {

/...

Monday, October 24, 2011

Integrating with the new Connector

class Connector {
tags(Address) connectionAddress;

resource connection {
properties @connected, @disconnected, @configured;

void setAddress(Address a)
a: connectionAddress;
this: +@configured. { // ... }

void connect()
this: +@connected, @configured. { //... }

void disconnect()
this: -@connected, +@disconnected. { //... }

class Client {
Address a(connectionAddress);
void m(Connector ¢) mutates c.connection:
c: {
#transform(c, @connected):;

Generated code

c.setAddress(a);
c.connect();
c.disconnect();

#transform(c, @disconnected);

(start)

!

setAddress(a)

I
@configured

v

connect()

@connected, @configured

Y

#transform(c,

@connected)

@connected, @configured

\J

disconnect()

@disconnected

v

#transform(c,
@disconnected)

Monday, October 24, 2011

Intended workflow

Update client-side

System OK

Client
component Poplar
changes annotations

Service Update service-
component side Poplar Republish
changes annotations
T —
Succeed
Succeed
N\
(Re)generate _
integration links Fail
000 "

from queries

design

Start
(automated)
yd ‘ Fail
New
system |-

a

Redesign
system

Verify
integration links
(automated)

Monday, October 24, 2011

Limitations of our design

e \We don’t encode control flow information (branches, loops and so on), so this
must be handled externally

e No support for exceptions, concurrency, generics

e |t is essential to preserve the meaning of each individual label across program
upgrades

Monday, October 24, 2011

Jardine, a Poplar implementation

e The first prototype release will be available for download at http://
www.poplar-lang.org very soon

e Based on David Pearce’s JKit' Java compiler; written in Java and Scala

e Checks Poplar constraints and solves queries, compiles Poplar source files to
Java classes

e Co-implemented with Alexandre Pichot, UPMC, France

1. Pearce, David. “JPure: A Modular Purity System for Java.”, CC 2011

Monday, October 24, 2011

http://www.poplar-lang.org
http://www.poplar-lang.org
http://www.poplar-lang.org
http://www.poplar-lang.org

Summary of results

e The language design appears to be useful for describing real APls (Swing,
JDBC)

e Modular compilation, polymorphism
e A strategy for handling aliasing
e Built-in slack allows for future evolution

e A formalisation based on Middleweight Java'

1. Nystrom-Persson, Pichot and Honiden. Evolvable Java Composition with Stateful Labels and Effects. ESOP
2012, under review.

Monday, October 24, 2011

Conclusion

¢ \le propose a novel approach to Java component specification and
integration, based on Al planning

e \We combine ideas from typestate checking and from effect systems

e \erification of code, generation of integration links and verification of
integration links are all possible

e Initial integration becomes easy

e Staying integrated when components evolve becomes easy

Monday, October 24, 2011

Future work

e Case studies on software evolution in practice

e Further Jardine improvements
e Minor enhancements and bugfixes (short term)
e \/erification of integration links (long term)

e More comprehensive formalisation
¢ Type safety proof

e Full “Poplarisation” of selected Java libraries

Monday, October 24, 2011

The presentation ends here. Extra slides after this
point.

Monday, October 24, 2011

Generating and evolving integration links

Integration link = query + solution

<

Sa Evolution —> Sb Sa Evolution — Sb
Generate o ——————— 5
Cil C2 C3 C1 C2 C3

Monday, October 24, 2011

Related: Middleweight Java (MJ)

e Minimal calculus for an imperative fragment of Java (with side effects) by
Parkinson, Bierman, Pitts’

e The MJ authors prove the safety of a simplified form of the Boyland-
Greenhouse effect system

e We use MJ as a basis for formalisation of Poplar.

e FJ is a more well-known core calculus for Java, but unsuitable, since it has no
side effects (in particular, no assignment)?

1. Bierman, Parkinson and Pitts. “MJ: An Imperative Core Calculus for Java and Java with Effects.” 2003
2. lgarashi, Pierce and Wadler. “Featherweight Java: A Minimal Core Calculus for Java and GJ.” TOPLAS, 2001

Monday, October 24, 2011

Other related work

e | abel-selective lambda calculus’

e As far as we know, Poplar is the first application of label based argument
selection to Java

e Fully automated adaptation of ML components?
e Ownership systems?

e Jungloid mining*

1. Garrigue and Furuse. “A Label-Selective Lambda Calculus with Optional Arguments and its Compilation
Method.” 1995

2. Haack, Howard, Stoughton and Wells. “Fully Automated Adaptation of Software Components Based on
Semantic Specifications”, AMAST 2002

3. Clarke, Potter and Noble. “Simple Ownership Types for Object Containment.” ECOOP 2001

4. Mandelin, Xu, Kimelman and Bodik. “Jungloid Mining: Helping to Navigate the APl Jungle.” PLDI 2005

Monday, October 24, 2011

Conflict of evolution and integration

e Software developers often want to refactor their code, i.e. make systematic
structural changes

e |t has been found’ that a majority of breaking changes (changes that cause
bugs or compilation errors) in large software systems stem from refactoring

e Bloch? and Fowler® recommend that published interfaces should be changed
minimally and that they should be as small as possible

e The greater the number of components that must remain integrated, the
harder it is to evolve the program

1. Dig and Johnson. “The Role of Refactorings in API Evolution.” ICSM 2005
2. Bloch. “Effective Java.” 2001
3. Fowler et al. “Refactoring.” 1999

Monday, October 24, 2011

Additional features of Poplar

e Composite properties: alternative names for conjunctions of labels

e External resources/properties: labels of one object can be represented in
another object

Monday, October 24, 2011

Handling aliasing with unigueness Kinds

¢ Uniqueness kinds classify each variable
according to a) uniqueness or non-

uniqueness, and b) preservation of
uniqueness static Foo getFoo() result: normal. { ... }

class Foo {

O Unique; definite|y unique, preserves Foo() result: fresh. { ... }

uniqueness void baz() mutates this.baz;
: = : : void m1() mutates any(Foo).baz: {
° Mglntaln. possibly unigue, preserves Foo f = getFoo(): //f is aliased
uniqueness f.baz();
}
e Normal: not unigue, does not preserve void m2 |
uniqueness Foo f(unique) = new Foo(); //f is now
unique
f.baz;

* Fresh: new and unigue, can be

. . }
converted to any other unigueness kind

Monday, October 24, 2011

Managed/plain boundary

¢ \We divide each component into plain code and managed code

e Constraints such as unique need only be true in managed code, and Poplar
will only use managed code for integrations (logical uniqueness rather than
true uniqueness)

¢ \We make this practical by constraining the flow of data between components
to be in managed code l

Monday, October 24, 2011

—xample: registry with managed/plain code

class Item {
static List<ltem> allltems;
e Managed code is simply code /1.
. tags usefulltem;
that has associated Poplar tags(int) numitems;
SignatureS ltem() result: +usefulltem, unique. {

allltems.add(this);
}

e The result of Item() is not truly

resource state {

unique, but it is unigue within the propatics Qust]

managed code - “logically , this: ++@used.

unique” }

int countltems() resu.lt: +numltems. {

e We may view the managed code , rem allitems.size0;

as an integration interface }

. class User {

® The extra aliases that are created void useltem(ltem i) mutates i.state:

. . i unique, +@used. {

In the plain code must not be i.use();

exposed in managed code -

/ [if “i” were not unique, the above would be:
//mutates any(ltem).state

}

Monday, October 24, 2011

Resource structure (partial) for J

D

ResultSet

Class

Statement

Connection

3C

4/(ontpastes)

Monday, October 24, 2011

class ResultSet {
tags(int) resultData, columnindex;

Exam p‘e Code tags(String) resultData;

tags updatable;

resource warnings {

. . void clearWarnings() {}
e Tags are like properties, but }

CannOt be erased resource rowUpdates {
properties @dirty;
void cancelRowUpdates() this:updatable. {}
void updateBoolean(int idx, boolean x) this: updatable, +@dirty. {}
void updatelnt(int idx, int x) this: updatable, +@dirty. {}
/] etc...

void updateRow() {}
}

resource cursor {

class Statement { properties @first, @last;
tags(ResultSet) statementResult;
tags(String) sqlQuery; boolean relative(int rows) this: @open. {}
boolean absolute(int pos) this: @open. {}
resource(Re_suItSet) results { boolean next() this: @open. {}
properties @open; boolean previous() this: @open. {}
links results; | void first() this: @open, +@first. {}
links ext(Connection).connection; void last() this: @open, +@last. {}
i }
resource results { _ int getint(int index)
ResultSet executeQuery(String query) this: @open, index: columnindex, result: resultData. {}
query: sqglQuery, result: statementResult,
+@open. { } String getString(int index)
} } this: @open, index: columnlndex, result: resultData. {}
}

Monday, October 24, 2011

Partial Order Planning algorithm (POP)

1. Initialise plan to have two pseudo-actions, start and finish

2. If there are no open preconditions, stop

3. Select an open precondition

4. Create each possible successor with new and existing actions

5. Resolve conflicts in each successor by strengthening ordering

6. Go to step 2
-ee-pP ?
37

o O
‘\é

v

O

Monday, October 24, 2011

